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ABSTRACT 

 

As known, permanent magnet (PM) machines exhibit higher efficiency, higher reliability and 

higher energy than electrically excited machines. Among PM machines transverse flux (PMTF) 

machines offer higher power to volume ratio than other types of PM machines.  That is why there is 

a great interest of researches towards PMTF machines. For the last 50 years more than a hundred 

different topologies have been introduced in this class of electric machines. 

This dissertation is concentrated mainly on the newest PMTF machine topology proposed and 

patented by Jacek F. Gieras in March 4, 2010. Such a topology (topology of 2010) is an object of this 

dissertation.  A prototype that was built with 3D Finite Element Method (FEM) modeling of PMTF 

generator proves that the generator that was built on the basis of topology of 2010 has several 

significant disadvantages among which the greatest impact have high leakage flux losses.   

Applying FEM modeling, various steps to improve machine performance have been 

undertaken. Results obtained from modeling show, that keeping the same diameter and lengths of the 

machine as well as number of turns of the winding, output power of the machine can be two times 

higher and the negative flux linkage that is established by “inactive” PMs significantly reduced. This 

was achieved by introducing magnetic shunts to the stator structure. These shunts also reduce cogging 

torque.   

Modifications include changing machine stator structure, slot shape, and implementation of 

magnetic shunts which play a vital role in preventing flux leakage losses and reducing cogging 

torque. During modifications a big attention was paid to simplifying a manufacturing process. 

Modifications do not complicate machine design and count all aspects which may arise when 

manufacturing. 
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Modified version of the PMTF machine was built by Polish manufacturer “Komel” for 

University of Nevada-Reno. This project was supported by National Science Foundation. The 

prototype results prove that the magnetic shunts block almost 70% of negative magnetic flux coming 

from inactive magnets. The induced voltage of the machine calculated using 3D FEM model is the 

same what was obtained during prototype laboratory test. However, the laboratory test also shows 

that if magnetic shunts are made of pure iron, generator has significant power losses. These power 

losses are caused by eddy currents induced on the magnetic shunts. To prevent eddy currents flowing 

on the magnetic shunts’ surface, instead of pure iron, laminated steel or magnetic powder has to be 

selected as a material for shunts.  

 Combining the ideas of topologies [1-3] a new version of PMTF machine is introduced in this 

dissertation. Its electromechanical parameters are calculated. Three different designs of PMTF 

generator are compared in terms of output power to volume ratio.  

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 1: INTRODUCTION 

1.1 Overview of the Dissertation 

Highly efficient Permanent Magnet Transverse Flux (PMTF) machines have been under careful 

attention of researches. In the past years there are many papers written on these machines [6-22]. 

Most of them intended to improve their construction in order to get better performance when they 

operate as wind generators. This dissertation focuses on a PMTF machine as a generator also.  

The various PMTF constructions of PMTF machines are proposed not only to improve the 

machine performance but also to make a manufacturing process easier. In some papers [15] authors 

discus various shapes of magnetic poles, such as: C-core, E-core and claw pole. Another paper [16] 

introduces a ring-shape PMTF machine which does not use a shaft to transfer the torque and to 

support both the rotor and the stator. It is achieved by applying a direct drive turbine to the stator. 

Many authors in their papers [20] discuss different types of the machine are studied: machine with 

surface mounted magnets which are described in [21] and others with flux-concentration described in 

[22]. The aim of this study is to find out which group of PMTF machines gives better performance 

and lower cost. 

Research towards improvement of PMTF machine performance led to new PMTF machine 

patents. Taking into account all disadvantages of PMTF machines patented in the past new efficient 

and simpler in structure machines appear from year to year. For example, a construction patented in 

1997 [2] looks more complex from the manufacturing point of view, where the rotor requires to be set 

up not only with the core and PMs but also with elements which hold the magnets. A year later 

another topology [3] which makes the reference to the topology of 1997, is introduced where there is 

no problem with magnet attachments, but some complexity in combining outer and inner stator in one 

machine.  

1 
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The diagram representing all patented PMTF machine topologies in the USA after 1965 is shown 

in Fig. 1.1. 

 

Fig. 1.1 USA Patents on Transverse Flux Machines 

 

The digit on each chart corresponds to a number of patents introduced at the particular year. It can be 

concluded from the diagram that the peak of researchers’ attention to PMTF machines is within 1986 

to 1999 years. After 1999 prior to 2010 no new topologies were introduced in the literature. Topology 

that appears in 2010 (topology of 2010) proves, that the interest of researches to PMTF machines still 

exists and there is still a space for new ideas. 

This dissertation is directed on the study and improvement of the newest patented version of 

PMTF machine (topology of 2010). This work makes the reference to a PMTF machine prototype 

which was built according to the topology of 2010. A thorough analysis of the electromechanical 

parameters of the machine was carried out and the results were compared with ones obtained from the 

measurements carried out on the physical model. This comparison allowed detecting the 

disadvantages of the topology of 2010. Based on these observations some modifications were done 

towards improving machine performance. After description of the machine design and its principle of 

operation, the main objectives for this dissertation are listed. 
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PMTF Machine Topology of 2010  

The topology of 2010 design is schematically shown in Fig. 1.2 where one half of PMTF is 

shown as a longitudinal cross-section. PMTF machine consists of three outer stator assemblies 12a, 

12b, 12c (one for each of three phases: A, B, C) and corresponding to them rotor assemblies 14a, 14b, 

14c. Each stator assembly includes toroidal or ring coil 16, and the U-shaped magnetic poles 18 made 

of laminated steel [1]. 

 

Fig. 1.2 Cross-section of a three-phase PMTF machine [1] 

 

Rotor assembly 14 is affixed to a shaft 22, and includes cylindrical ferromagnetic core 24 and 

permanent magnets 26 and 28. Rotor and stator assemblies are distributed circumferentially around 

the shaft 22 [1]. 

Each phase of the three phase electric machine shown in Fig. 1.2 operates in the same way. 

Accordingly, the operation of the three-phase electric machine is described with respect to a single 

phase of the machine defined by stator assembly 12a and rotor assembly 14a. When the machine is 
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operating as a generator, permanent magnets 26a and 28a are caused to rotate by rotating shaft 22 to 

create a an alternating magnetic field. Hence, magnetic flux Ф circulates in alternating direction 

through U-shaped magnetic circuit 18a (Fig. 1.3). In particular, magnetic flux circulates from a first 

pole “S” through the top portion of U-shaped magnetic pole 18a. Next, down through a second pole 

“N”. An alternating current (AC) voltage is generated in ring coil 16a in response to the circulating 

magnetic flux [1]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 Magnetic flux circulating through U-shaped stator magnetic circuit [29] 

 

Based on the desired 2 KW output power value, dimensions of the machine were calculated and 

prototype of the generator was built. The results obtained from testing the prototype showed 

significant differences between the calculations and measurements taken from the real model [29]. 

The prototype output power was 65% lower than expected value. 
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 Main objectives of this dissertation directed to improving the PMTF machine performance are 

listed below. 

 

1.2 Objectives of the Dissertation  

1. To study the latest proposed version of PMTF machine in order to find out the deficiencies 

which it faces. 

2. To propose and design the improved version of PMTF machine and optimize its construction. 

3. To determine the performance of the improved version of PMTF machine in steady-state and 

dynamic conditions. 

4. To design a new topology of PMTF machine with high output power to volume ratio and 

analyze it in steady-state and dynamic conditions. 

 

 

 

1.3 How the Objectives Were Accomplished  

 Objective 1. To find out the deficiency of the newest version of PMTF machine, it was modeled 

using 3D FEM and the results were compared with those obtained from the experimental test 

carried out on the physical model of the generator. 

 Objective 2. To accomplish the Objective 2, a few modified versions of the machine were 

proposed and designed applying 3D FEM software: Maxwell 12v. To ensure that the designed and 

optimized PMTF machine was not overheated, the heat transfer model was built and the 

temperature analysis was done. 

 Objective 3. To determine the PMTF machine performance in steady-state, the equivalent circuit 

was applied. The analysis of generator dynamics was done using Matlab/Simulink software. 
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 Objective 4. Based on the review of previous PMTF machine topologies a new design which 

offers higher output power to volume ration was designed. Its performance was analyzed and 

compared with previous topologies.  

 

 

1.4 Tasks of the Dissertation  

1.  To analyze flux linkage of the stator winding of the topology of 2010 in order to determine 

flux leakage losses in the machine using 3D FEM modeling.  

2. To propose modifications to the stator and rotor structure in order to improve machine 

performance. 

3. To optimize machine construction with aim to get high efficiency and power to volume ratio. 

4. To determine the machine performance in steady-state and dynamic conditions. 

5. To analyze the temperature of the machine in order to avoid its overheating. 

6. To propose the gearless wind power generating system. 

7. To design a new topology of the PMTF machine based on the combination of the ideas 

represented in patents [1-3]. To determine its performance and compare with the results 

obtained from the modified version of the topology of 2010.  

 

1.5 Outline of the Dissertation  

1. Chapter 2 discusses the software used in the dissertation for machine thorough analysis. 

Software is based on both field and circuit theories.  

2. Chapter 3 represents the object of the dissertation (topology of 2010) and its design 

parameters. In this chapter a prototype and 3D FEM model of the machine are introduced.  
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3. Chapter 4 deals with thorough analysis of the machine magnetic flux distribution and flux 

leakage problems. Different ways to improve machine performance are described and 

analyzed. 

4. Chapter 5 represents a 1kW PMTF machine which is studied in steady-state and dynamic 

conditions. Temperature analysis is done too.  

5. Chapter 6 is dedicated to a new configuration of the PMTF machine with double armature.  

6. Chapter 7 contains conclusions and future scope of study.  
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CHAPTER 2: DESCRIPTION OF THE SOFTWARE USED IN THE DISSERTATION   

      2.1 Field and Circuit Theories in Analyzing Electric Machines  

Electrical and electromechanical devices can be described using two theoretical approaches: 

- field theory; 

- circuit theory. 

Applying the field theory, a particular device is described mathematically in space and time 

domain and the particular mathematical model reminds the physical object despite simplifying 

assumptions are applied. 

In the circuit theory a particular device is represented by the electric circuit with all passive and 

active elements, and the mathematical model is analyzed in time domain only. The passive elements 

(resistance, inductance and capacitance) are usually determined using a field theory or are found out 

experimentally. 

The field theory applied to magnetic elements of the machine structure allows including the local 

nonlinearity. This cannot be done using circuit theory. However, the disadvantage of the field theory 

is of using very complex algebra and in general, to find the solution of mathematical expressions is a 

time consuming procedure.  

 A practical approach to solve a problem of electromechanical devices like electric machines is to 

apply the field theory in designing the particular object, and then, using the circuit theory, machine 

performance is analyzed under variable load and supply conditions. The circuit parameters are 

determined first using a field theory. 

      2.1.1 Field Theory Software   

The equations derived in field theory can be solved analytically or applying numerical methods. 

The analytical methods do not allow taking elements of magnetic circuit like teeth in stator and rotor.  
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Thus, the local saturation of magnetic circuit should be ignored. This deficiency does not have 

numerical methods. That is why they are commonly used nowadays. One of these widely used 

methods is Finite Element Method (FEM). 

 

2.1.2 Maxwell’s Equations for Magnetostatic Problems [24] 

In this dissertation FEM is used to solve magnetostatic problems. These are problems in which 

the magnetic field is time-invariant. “In this case, the field intensity (H) and flux density (B) must 

obey the following Maxwell’s equation:  

                                                                                                                                 (2.1) 

2.2) 

where  is a current density. 

Constitutive relationship between B and H for each material: 

                                                                  (2.3) 

If a material is nonlinear, the permeability  is a function of B: 

                                                                 (2.4) 

FEM is used to find a field that satisfies Eqns. (2.1 – 2.3) via a magnetic vector potential 

approach. Flux density is written in terms of the vector potential A, as:  

                                                                                                                               (2.5) 

This definition of B always satisfies Eqn. (2.2). When substituted into Eqns. (2.1) can be rewritten 

as: 

                                                  (2.6) 

For a linear isotropic material, Eqn. (3.6) reduces to: 
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                                                       -                                                            (2.7) 

FEM retains the form of (2.6), so that magnetostatic problems with a nonlinear B-H relationship 

can be solved.  

In the general 3D case, A is a vector with three components. However, in the 2D planar and 

aximmetric cases, two of these three components are zero, leaving just the component in the “out of 

the page” direction.  

The advantage of using the vector potential formulation is that all the conditions to be satisfied 

have been combined into a single equation. If A is found, B and H can then be deduced by 

differentiating A. The form of Eqn. (2.6) is an elliptic partial differential equation, and it arises in the 

study of many different types of engineering phenomena”.  

 

      2.1.3 Finite Element Method [23] 

“The Finite Element Method (FEM) has been developed into a key, indispensable technology in 

the modeling and simulation of advanced engineering systems in various fields like housing, 

transportation, communications, and so on. The FEM was first used to solve problems of stress 

analysis, and has since been applied to many other problems like thermal analysis, fluid flow 

analysis, piezoelectric analysis, and others.  Basically, the analyst seeks to determine the distribution 

of some field variable like the displacement in stress analysis, the temperature or heat flux in thermal 

analysis, the electrical charge in electrical analysis, and so on. The FEM is a numerical method 

seeking an approximated solution of the distribution of field variables in the problem domain into 

several elements”.  

In this dissertation FEM is used to solve magnetostatic problems. In magnetostatic problems the 

magnetic field is time-invariant.  
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 “The behavior of a phenomenon in a system depends upon the geometry or domain of the system, 

the property of the material or medium, and the boundary, initial and loading conditions.  

The procedure of computational modeling using FEM consists of four steps: 

- Modeling of the geometry; 

- Meshing (discretization); 

- Specification of material property; 

- Specification of boundary, initial and loading conditions”. 

Modeling of the geometry [23] 

“Real structures, components or domains are in general very complex, and have to be reduced to 

a manageable geometry. Curved parts of the geometry and its boundary can be modeled using curves 

and curved surfaces. However, it should be noted that the geometry is eventually represented by 

piecewise straight lines of flat surfaces, if linear elements are used. The accuracy of representation of 

the curved parts is controlled by the number of elements used. It is obvious that with more elements, 

the representation of the curved parts by straight edges would be smoother and more accurate. 

Unfortunately, the more elements, the longer is the computational time that is required. Hence, due to 

the constraints on computational hardware and software, it is always necessary to limit the number 

of element”.  

Meshing [23] 

“Meshing is performed to descretize the geometry created into small pieces called elements or 

cells. The solution for an engineering problem can be very complex and if the problem domain is 

divided (meshed) into small elements or cells using a set of grids or nodes, the solution within an 

element can be approximated very easily using simple functions such as polynomials. Thus, the 

solutions for all of the elements form the solution of the whole problem domain.  Mesh generation is a 
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very important task of the pre-process. It can be a very time consuming task to the analyst, and 

usually an experienced analyst will produce a more credible mesh for a complex problem. The 

domains have to be meshed properly into elements of specific shapes such as triangles and 

quadrilaterals”. Triangle mesh of the PM synchronous machine is shown in Fig. 2.1.  

 

 

 

 

 

 

 

 

Fig. 2.1 Triangle mesh in FEM 

 

 

Property of material or medium [23] 

“Many engineering systems consist of more than one material. Property of materials can be 

defined either for a group of elements or each individual element, if needed. For different phenomena 

to be simulated, different sets of material properties are required. For, example, Youg’s modulus and 

shear modulus are required for the stress analysis of solids and structures whereas the thermal 

conductivity coefficient will be required for a thermal analysis. Input of material’s properties into a 

pre-processor is usually straightforward. All the analyst needs to do is select material properties and 

specify either to which region of the geometry or which elements the data applies”.  
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Boundary, initial and loading conditions [23] 

“Boundary, initial and loading conditions play a decisive role on solving the simulation. To input 

these conditions is usually done using commercial pre-processor, and it is often interfaced with 

graphics. Users can specify these conditions either to the geometrical identities (points, lines or 

curves, surfaces, and volumes) or to the elements or grid”. 

 

      2.1.4 Commercial FEM programs Used in the Dissertation 

There are many commercially used FEM programs. Three programs are used in this dissertation: 

FEMM 4.0 [24], Maxwell 12v [25] and ePhysics 12v [26]. 

 FEMM 4.0 [24] 

“FEMM 4.0 is a set of programs for solving low frequency electromagnetic problems of two-

dimensional planar and axisymmetric domains. The program currently addresses linear/nonlinear 

magnetostatic problems, linear/nonlinear time harmonic magnetic problems, linear electrostatic 

problems, and steady-state heat flow problems [24]. 

FEMM is divided into three parts: 

• Interactive shell (femm.exe): 

 This program is a Multiple Document Interface pre-processor and a post-processor for the 

various types of problems solved by FEMM. It contains a CAD like interface for laying out the 

geometry of the problem to be solved and for defining material properties and boundary conditions. 

Autocad DXF files can be imported to facilitate the analysis of existing geometries. Field solutions 

can be displayed in the form of contour and density plots. The program also allows the user to inspect 

the field at arbitrary points, as well as evaluate a number of different integrals and plot various 

quantities of interest along user-defined contours. 
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• Triangle.exe: 

Triangle breaks down the solution region into a large number of triangles, a vital part of the 

finite element process 

• Solvers: 

- fkern.exe  - for magnetics; 

- belasolv  - for electrostatics;  

- hsolv  - for heat flow problems;  

- csolv  - for current flow problems. Each solver takes a set of data files that describe 

problem and solves the relevant partial differential equations to obtain values for the 

desired field throughout the solution domain.  

The Lua scripting language is integrated into the interactive shell”.  

FEMM 4.0 was used in this dissertation mainly to study the magnetic field and flux linkage 

behavior in the generator with and without shunts.  

 Maxwell 12v [25] 

“Maxwell 12v is an interactive software package that uses finite element method to solve three-

dimensional (3D) electrostatic, magnetostatic, eddy current and transient problems. It is used to 

compute: 

• Static electric fields, forces, torques, and capacitances caused by voltage distributions and 

charges. 

• Static magnetic fields, forces, torques, and inductances caused by DC currents, static external 

magnetic fields, and permanent magnets.  

• Time-varying magnetic fields, forces, torques, and impedances caused by AC currents and 

oscillating external magnetic fields.  
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• Transient magnetic fields caused by electrical sources and permanent magnets”. 

Maxwell 12v is a key software used for calculation of electromagnetic parameters of the 

considered transverse flux generator.  

 ePhysics  12v [24, 26] 

 

“ePhysics is an interactive software package for analyzing thermal and structural deformation 

and stress. ePhysics is designed to work in standalone mode or coupled with Maxwell 

electromagnetic or High-Frequency Solution Sequences (HFSS). Using ePhysics 12v the following 

can be computed: 

• Temperature and heat flow vector distributions. 

• Average temperature, hot spot temperature, and cold spot temperature. 

• Displacement, von Mises stress, principal stresses, and traction. 

• RMS measure of stress, maximum von Mises stress, and maximum principal stress.  

In general, finite element based field solvers enable to simulate thermal and structural fields in 

practically any type of device. It is expected to draw the structure and specify all relevant material 

characteristics, boundary conditions and sources. ePhysics 12v then generates the necessary field 

solutions and computes the requested quantities of interest. It can be viewed and analyzed the fields 

in the device using the software’s post-processing features”. 

“The heat flow problems address by ePhysics 12v are essentially steady-state heat conduction 

problems. These problems are represented by a temperature gradient, G (analogous to the field 

intensity, E for electrostatic problems), and heat flux density, F (analogous to electric flux density, D, 

for electrostatic problems). 



 
 

16 
 

The heat flux density must obey Gauss’ Law, which says that the heat flux out of any closed 

volume is equal to the heat generation within the volume. Analogous to the electrostatic problem, this 

law is represented in differential form as: 

                                                                  ·F = q                                                                       (2.8) 

where q represents volume heat generation. 

          Temperature gradient and heat flux density are also related to one another via the constitutive 

relationship:   

                                                                F = kG                                                                              (2.9) 

where k is the thermal conductivity. Thermal conductivity is often a weak function of temperature. 

FEM allows for the variation of conductivity as an arbitrary function of temperature. 

            Ultimately, one is generally interested in discerning the temperature, T, rather than the heat 

flux density or temperature gradient. Temperature is related to the temperature gradient, G, by [49]: 

                                                              G= − T                                                                          (2.10) 

 Substituting (2.10) into Gauss’ Law and applying the constitutive relationship yields the second 

order partial differential equation:  

                                                             

(2.11) 

ePhysics solves (2.9) for temperature T over a user-defined domain with user-defined heat sources 

and boundary conditions”.  

 

 

 

ePhysics 12v is used in the dissertation for temperature analysis of the generator.  
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       2.1.5 Circuit Theory Software  

 Matlab and Simulink 2010 [28] 

“MATLAB
®

 is a high-level language and interactive environment that enables to perform 

computationally intensive tasks faster than with traditional programming languages such as C, C++, 

and Fortran. 

Simulink
®

 is an environment for multidomain simulation and Model-Based Design for dynamic 

and embedded systems. It provides an interactive graphical environment and a customizable set of 

block libraries that let you design, simulate, implement, and test a variety of time-varying systems, 

including communications, controls, signal processing, video processing, and image processing”. 

Dynamic and steady-state analysis of the generator is done using Matlab and Simulink.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

18 
 

CHAPTER 3: PMTF MACHINE CONSTRUCTION AND DESIGN PARAMETERS 

3.1 Description of the Machine Prototype and 3D FEM Model  

The prototype of the PMTF generator that is the object of study in this chapter was designed by 

the University of Nevada, Reno in cooperation with National Wind Technology Center (Fig. 3.1). 

The machine was designed accordingly to the topology of 2010 which has been discussed in Chapter 

1. The stator consists of three rings, each of them for different phase. The rotor, placed inside of the 

stator, has also three ferromagnetic rings attached to the rotor shaft. Two rows of PMs are glued to 

each of the cylinders.  

 

 

Figure 3.1 Scheme of PMTF machines designed according to the topology of 2010 [29] 
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The prototype of the generator is shown in Fig. 3.2.  

                  a) 

 

                   b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 PMTF machine prototype: a) rotor, b) stator [29] 
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For analyzing the generator performance its 3D FEM model was built.  

Since all three parts of the generator do not influence one another magnetically the analysis of the 

generator operation can be carried out for a single phase. The structure of one machine phase is 

shown schematically in Fig. 3.3. 

 

 

Figure 3.3 Machine structure for one phase 

The stator core has 12 U-shape poles made of laminated steel. The stator winding has a form of 

O-ring and is placed inside of the core poles. The rotor ring, made of solid iron, has two rows of PMs 

with 24 magnets in each row. The dimensions of the stator and rotor parts shown in Fig. 3.4 are 
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enclosed in Table 3.1. The design parameters of the machine for a single phase are enclosed in Table 

3.2.  
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Figure 3.4 Machine dimensions [29] 
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Table 3.1 Dimensions of the generator parts  

PARAMETER DIMENSIONS   

Pole pitch 

Dimensions of the permanent magnet 

Permanent magnets 

Average diameter of the air gap 

Rotor outer diameter 

Stator inner diameter 

Circumferential width of the stator pole 

Axial length of the stator pole  

Distance between stator poles  

Axial width of the stator core per phase 

Axial width of the rotor core per phase 

Height of the stator coil 

Axial width of the stator coil 

Height of the stator core (poles + yoke) 

Height of the stator yoke 

Height of the rotor yoke 

Height of unfilled stator slot  

  = 16 mm 

hM = 6.2 mm, lM = 17 mm, wM = 13.4 mm 

NdFeB with Br  1.25 T  

Dg = 120 mm 

Drot = 119 mm 

Dst,in= 121 mm 

bp = 14 mm 

lp = 15 mm 

bu = 17 mm 

wu = 47 mm 

49 mm 

hw = 17 mm 

approx. 17 mm 

hu = 33 mm 

hsy = 13 mm 

hry = 36.1 mm 

ho = 1 mm 

 

 

Table 3.2 Design parameters for a single phase structure of the generator  

STATOR  

       Winding: 

- Number of coils 

- Number of turns per coil 

- Wire    

- Winding fill factor, kfill 

      Magnetic Core: 

- Number of magnetic core poles  

- Air-gap length  

 

 

 

1 

28 

AWG12 (square) 

0.7 

 

p = 12 

g=1.5 mm 

ROTOR 

- Number of rotor poles 

         Permanent magnets:             

         -       Type  

         -       Relative permeability, μ 

         -       Bulk conductivity, γ      

         -       Residual flux density,  Br    

         -       Thickness (radial lengths) 

 

 

p=24 

 

NdFeB 35 

1.09967 H/m 

625000 S/m 

1.2 T 

6  mm 
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The magnetic flux set by the PMs during the rotation is closed through the stator poles in axially 

oriented plane. When the rotor rotates its magnets change their polarity with respect to the stator pole 

inducing voltage in the stator winding with frequency: , where  is the number of poles 

on the rotor circumference and  is the rotor speed in rpm.  

To obtain a phase shift between phase voltages permanent magnets of each phase must be 

displaced by 120 electrical degrees (20 mechanical degrees). The magnet axial layout is shown in Fig. 

3.5 [29].  

 

 

Figure 3.5 PM axial layout for 3-phase machine structure [29] 
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3.2 Electromechanical Parameters of the Generator  

The estimated electromechanical parameters of the generator which were calculated and presented 

in the report [29] are shown in Table 3.3. These parameters however do not match the results 

obtained from the test carried on generator prototype which also are enclosed in Table 3.3. 

 

Table 3.3 Estimated electromechanical parameters of the generator 

 

The output power and no-load voltage obtained during the test at 600 rpm are nearly three times 

lower. Similar differences occurred also for the entire range of speeds from 0 to 1200 rpm what is 

illustrated by the characteristics shown in Figs. 3.6 and 3.7. 

 

Figure 3.6 Output power of the generator  

 

Electromechanical parameters 

 

Estimated 

 

Measured 

(prototype) 

 

Calculated (3D 

FEM model) 

No load phase voltage amplitude  [ ] 

Speed [rpm] 

Output power [W] 

48.3 

600 

2090 

16.1 

600 

750 

16 

600 

800 
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Figure 3.7 Induced voltage of the generator  

 

To find out the cause of these differences a 2D FEM generator model was built. In this model only one 

stator pole with rotor active magnets was considered. The flux density distribution obtained from the 

model simulation is shown in Fig. 3.8. 

 

Figure 3.8 Magnetic flux density of the machine [29] 

 

The flux linkage relevant to this flux density is 0.08 Wb per stator pol. This, multiplied by angular 

frequency ω and by the number of stator poles  of a single phase according to the equation: 
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                                                           (3.1) 

gives 49 V. 

These results indicate that the estimated value of induced voltage enclosed in the report were 

obtained from 2D FEM modeling in which no influence of non-active magnets was assumed.  

To find out what is the cause that the voltage induced by the active rotor magnets is lower, further 

test and 3D FEM modeling were performed. 
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CHAPTER 4: MAGNETIC FLUX ANALYSIS AND IMPROVEMENT OF THE 

GENERATOR PERFORMANCE 

 

      4.1 Magnetic Flux Distribution Determination 

To determine the magnetic flux distribution in the stator core three search coils made of 10 turns 

were applied [29]. Fig. 4.1 shows the places where the search coils were mounted. 

 

 
 

Figure 4.1 Search coils mounted on the stator 

 

The coil 1 senses the flux linking the phase winding. Coil 2 senses the axial stator pole flux, and 

the coil 3 senses the circumferential flux passing between stator poles. The voltages induced in the 

search coils taken from the prototype test [29] and calculated in 3D FEM are shown in Fig. 4.2. 



 
 

28 
 

Comparing both test and simulation results no significant discrepancies occurred. This justifies 

the correctness of 3D FEM modeling.  

Voltage induced in coil 3 implies that relatively large magnetic flux passes circumferentially 

which does not contribute to the induction of phase voltage. The distribution of this flux in the stator 

yoke is shown in Fig. 4.3 

 
 

Figure 4.2 Induced voltages in the search coils: a) test results [29], b) simulation results 
 

 
 

Figure 4.3 Magnetic flux in the stator yoke 
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To eliminate this flux the stator core was modified to the version shown in Fig. 4.4. The induced 

phase voltage calculated for the new version is shown in Fig. 4.5 a. The amplitude of this voltage is 

7.5% higher than that induced in the original version which is shown in Fig. 4.5 b 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.4 Generator with modified stator 
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a) 

 
 

b) 

 
 

Figure 4.5 a) Induced voltage of the new version of the generator stator, 
b) induced phase voltage of the original version of the generator stator 
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The calculation results of the magnetic flux in the rotor area presented in Fig. 4. 6 shows that part 

of the flux is closed between adjacent magnets in circumferential direction. 

 

                                           Figure 4.6 Magnetic flux in the rotor 

This flux does not take part in energy conversion and can be cut off. Only the rotor axial 

component of the flux is vital for emf induction. 

To minimize the circumferential flux components small gaps of 1.3 mm were introduced between 

the magnets as it shown in Fig. 4.7 

 

Figure 4.7 Generator with modified rotor 
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The voltage induced in the generator coil after this modification is equal to 18 V, which is 7% 

higher than that in the version without the gaps (Fig. 4.8). It means that this modification did not 

contribute significantly to the improvement in voltage induction.  

The magnetic flux which contributes to the energy conversion at particular time instant is coming 

from the rotor magnets being actually under the stator poles. The flux of the rest of the magnets can 

be then “switched off”. To find the percentage of the flux of the “active” magnets simulation was 

carried out for a generator structure without “inactive” rotor magnets as shown in Fig. 4.8. 

 

 

Figure 4.8 Generator without “inactive” magnets 

 

The amplitude of the calculated flux linkage is shown in Fig. 4.9 and equal to 0.08 Wb. It is 70% 

higher than that of the flux linkage amplitude when both “active” and “inactive” magnets exist. It 

means that “inactive” magnets significantly diminish the flux linkage responsible for energy 

conversion. 
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Figure 4.9 Flux linkage of the coil (“active” magnets only) 

To find the percentage of the negative flux coming from the “inactive” magnets a calculation was 

done of the generator with a presence of only these magnets. The flux density distribution for this 

case is shown in Fig. 4.10.  

 

 

Figure 4.10 Generator with “inactive” magnets only 
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The flux density of this “negative” flux in the stator poles is around 70% of the “positive” flux 

coming from “active” magnets. Such “negative” flux significantly lowers the performance of the 

generator. It means it should be “switched off” during generator operation. This is a subject of the 

next subsection. 

4.2  Implementation of the Magnetic Shunts in the Stator Structure 

To eliminate the negative flux linkage magnetic shunts were applied between the stator poles as 

shown in Fig. 4.11. Similar type of shunts was also proposed in [5]. 

 

 

 

 

Figure 4.11 Single-phase generator ring with magnetic shunts 

 

The calculation of emf in the coil were done for the shunts made of iron. The voltage waveform 

that was obtained is shown in Fig. 4.12. The voltage amplitude is nearly two times higher than that of 
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the model without magnetic shunts (see Fig. 4.5a). The effectiveness of blocking the negative flux 

coming from “inactive” magnets is almost 75%. This is proved by the amplitude of flux linkage in 

Fig. 4.13, which is now equal to: λ=0.06 Wb. 

 

 

Figure 4.12 Induced voltage of the generator with magnetic shunts made of iron 

 

 

 

 

 

 

 

 

Figure 4.13 Flux linkage of the model with magnetic shunts made of iron 
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The amplitude of the flux linkage of generator with shunts is 30% lower than that of the generator 

without “inactive” magnets (see Fig. 4.9). It means that negative flux caused by “inactive” magnets is 

not totally blocked by the shunts. Part of this flux still links adjacent magnetic poles. This flux is 

shown in Fig. 4.14.  

 

Figure 4.14 Negative flux of “inactive” magnets which links adjacent poles 

How effective are the shunts in blocking the negative flux is also shown in Fig 4.15. In case of the 

model with shunts magnetic flux linking the coil is almost negligible (Fig. 4.15 a), whereas in case of 

the model without shunts, a much greater flux penetrates the coil (Fig. 4.15 b).  

The magnetic shunts can be also made with laminated steel. In this case the eddy currents which 

are induced also repel the negative flux. They do not contribute to additional power losses like the 

shunts made of iron. Consequently, the efficiency of the generator is higher and the temperature of 

the winding and PMs will not be exceeded over the permissive value.  

The simulation of the generator with cooper and aluminum shunts was also done, and the 

calculated induced voltages were as follows: =30V – for copper, and =28V – for 

aluminum. As results show, copper and aluminum shunts also reduce effectively the negative flux 



 
 

37 
 

linkage. But similarly to solid iron shunts they cause high power losses and an increase of winding 

temperature. 

 

.  

Figure 4.15 Distribution of magnetic flux in the generator: a) model with shunts, b) model 

without shunts 

 

4.3 Torque Developed by the Generator   

One of the most important parameters of electrical machine is the electromagnetic torque. It is 

important to know not only its average value but also how it changes in time. With help of FEM an 

electromagnetic torque was calculated at rated current separately for each phase and also as a 

resultant for the whole generator. The results are shown in Fig. 4.16 a, and 4.16 b. The waveform of 

torque for the single phase calculated for original design shows a significant torque ripple. Its value 

was calculated as follows [48]: 
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                                                                                                              (4.1)        

  =92%        

                                                 

This torque ripple is much smaller when all three phases are considered (Fig. 4.16 b). Its value is 

equal to:   

  =14%  

 

The main cause of the torque ripple is from the cogging torque. It is caused by interaction of the 

rotor magnets with stator poles. The cogging torque component is shown in Fig. 4.17 a and 4.17 b. 

Cogging torque amplitude of 23 Nm of a single phase is seven times higher than the one developed 

by all three phases (Fig. 17 b). The reduction of resultant cogging torque is caused by a 120 electrical 

degrees permanent magnets shift on the adjacent rotor discs that belong to the two other phases. 

An implementation of magnetic shunts to the stator rings of all three phases influences the 

magnetic field distribution and this contributes to the further reduction of cogging torque. This is 

illustrated in Fig. 4.18 where the waveforms of the resultant torque (Fig. 4.18 a) and its cogging 

component (Fig. 4.18 b) are presented. The amplitude of the cogging torque is equal to 1 Nm. The 

torque ripple coefficient calculated for the generator with magnetic shunts is equal to 5%. The 

average torque developed by the generator equals to 105 Nm. 

In general, the torque ripple causes noise and vibration of the rotor what can lead to the rotor 

deformation. Also, with a low cogging torque it is easier for a wind turbine to start rotating. These 

above mentioned reasons emphasize the importance of cogging torque reduction what has been 

achieved. 
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a) 

 

 

 

b) 

 

 

 

Figure 4.16 Torque developed by the generator: a) single-phase model, b) 3-phase model 
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a) 

 

 

b) 

 

 

Figure 4.17 Cogging torque of the machine without the shunts: a) single-phase model, b) 3-

phase model 

 

 

For the 3-phase machine structure with shunts, cogging torque is almost negligible (Fig. 4.17 b) 
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Figure 4.18 a) Torque of the machine with shunts for 3-phase model, b) cogging component 

of the torque 

 

 

4.4 An increase of Flux Linkage with Stator Pole Shape Modification  

Stator pole shape of the topology of 2010 (Fig. 1.1) is designed in such a way that the width of the 

pole shoe is the same as magnet width. In case of the presented machine, due to such a construction, 

magnetic flux density in the pole is 1.1 T and may be increased to 1.6 T (around saturation for 

laminated steel). To achieve this, stator poles were modified as it shown in Fig. 4.19. 
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Figure 4.19 Stator pole configuration: a) original version, b) modified version with partially 

closed slots 

 

 

 

 

 Slots are partially closed around the coil and magnets are extended as it shown in Fig. 4.19. The 

dimensions of generator elements after modifications are shown in Fig. 4.20. They indicate that the 

diameter of the generator remains the same as well as the thickness of the stator pole core. 

The number of turns of the same wire can be increased by 14 (50%) and magnetic field density in 

the pole core to 1.6 T. The induced voltage of the generator with the new stator pole configuration 

and with magnetic shunts is: Emax=58 V, which is 80% higher than that of the generator with the 

original version of stator poles. It implies an increase of the generator power to 1.5 kW, it is by 35% 

with respect to construction with magnetic shunts shown in Fig. 4.11 and by 90% with respect to the 

original version shown in Fig. 3.3. 
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Figure 4.20 Dimensions of the generator elements: a) original version, b) modified version 

 

 

Increasing number of turns might affect coil temperature. Coil Temperature analysis is done is 

the next section. 

 

 

 4.5 Coil Temperature Analysis 

A simplified ePhysics 12v temperature model of the generator confined to one phase and one 

stator pole-pitch was created. It consists of the coil with certain number of conductors with rated 

current flowing through. The model is built based on the following assumptions: 

1. There is no heat transfer between phase rings, so only one phase can be analyzed.  

2. There is no heat transfer around the ring, so only one stator pole pitch is considered. 

3. The heat is equally distributed in the ring, so a part of it can be analyzed. 

4. Forced air cooling is ignored. 

ePhysics 12v coil heat model is shown in Fig. 4.21.  
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Figure 4.21 Heat computational model of the generator 

 

 

To verify the correctness of the model, it was simulated with parameters of the prototype model 

(see Table 3.1). So, in this simulation the coil has 28 turns. The current applied to the winding is 17 A. 

Ambient temperature of the coil at initial time 0 is 21 C˚. Results of simulation are shown in Table 4.1. 

 

 

Table 4.1 Coil temperature results of the prototype and ePhysics 12v model 

Model            Prototype ePhysics model 

Temperature of the phase winding, C˚                   24 25.1 
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The graph of winding temperature calculated in ePhysics is shown in Fig. 4.22. 

 

 

 

 

 

 

Figure 4.22 Temperature of the coil of the original version of the machine  

 

 

The results obtained from the prototype test and FEM model slightly differ. This is because of the 

assumption 3. In normal operation condition the rotor is rotating and the generator is cooled more 

intensively 
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The temperature analysis of the improved model with modified slot (Fig. 4.20 b) that posses 44 

turns was carried out too. The ambient temperature and the winding current remain the same as in 

previous simulation. The result of the simulation is plotted in Fig. 4.23. 

 

Figure 4.23 Coil temperature of the improved model with new number of turns 

 

With the new number of turns and with the presence of the magnetic shunt (made with laminated 

steel), the coil gets heated to 31.5 C˚.  

The temperature analysis shows that new modifications introduced in this chapter will not 

contribute to overheating of the winding. However, temperature of the winding can be affected by the 

temperature of magnetic shunts. The simulation shown above was done in case of the machine with 

laminated steel shunts. If another material is selected (iron), temperature of the shunt might be higher 

due to high eddy current induced in the shunts. The temperature with different metals for shunts is 

studied in the next chapter. 



 
 

47 
 

The results presented in this chapter and conclusions lead out to designing the new generator of 1 

kW power on the request of the Nevada University, Reno, which sponsored the project. 
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CHAPTER 5: 1 KW PMTF GENERATOR WITH INTERNAL STATOR 

 

 

 

5.1 General Description of Generator Construction 

 

 

In PMTF generators only half of the PMs are “active” at particular time instant. The other half of 

PMs contribute to the negative flux linkage what causes the smaller voltage to be induced in the 

generator winding. Thus, lower output power is generated. To diminish this negative influence iron 

bridges are proposed in [16] which are placed between stator poles. This, however, increases 

generator dimensions what causes lower power to mass ratio. Moreover, eddy currents are induced in 

these bridges what increases the power losses and temperature of the winding and PMs. 

In the previous chapter laminated magnetic shunts were proposed. And a thorough analysis of 

flux distribution in the generator was done in order to maximize the power of the generator at a given 

volume. In this chapter a 1 kW PMTF generator with internal stator and magnetic shunts is proposed 

and its performance is analyzed. 

A scheme of the generator is shown in Fig. 5.1. The inner stator attached firmly to the shaft 

consists of three rings of magnetic poles, each for different phase. The magnetic poles are U-shaped 

cores distributed evenly around the stator with the coil placed inside of the stator slots (see Fig. 5.2). 

The outer rotor also has three rings that match the stator rings. Each ring has two rows of PMs. To 

increase the flux linkage of the coils, magnetic shunts are placed axially between the stator poles (see 

Fig. 5.1). The effectiveness of the magnetic shunts was discussed in Chapter 4. 
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Figure 5.1 PMTF generator with inner stator 

In order to obtain 3-phase voltages displaced in time by 120 degrees, magnet pairs of each phase 

ring have a shift as it shown in Fig. 5.3. In the generator discussed here with eight pole pairs this shift 

is equal to 15 degrees.  

a)                                                                               b) 

  

  

 

 

 

 

 

 

 

Figure 5.2 a) A single-phase ring of PMTF generator, b) stator poles with the coil  
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Figure 5.3 Magnets axial layout 

 

       5.2 Determination of Design Parameters of PMTF Generator 

To determine the provisional dimensions of the generator the magnetic circuit model is applied in 

which the real machine is simplified. This simplification is described by the assumptions that are 

declared. Once the dimensions are determined and the winding parameters are calculated the 

generator is modeled in FEM software and its designed parameters are optimized. 

 

5.2.1 Magnetic Circuit Model of the Generator and Design Calculations  

The generator model is defined by following assumptions: 

 The magnetic permeability of the stator and rotor cores is infinitely high ( ). 

 The magnetic flux that links the stator winding changes in time sinusoidally (magnetic flux 

linkage: ). 

 The flux linkage comes entirely from “active” magnets (magnetic shunts eliminate the 

negative flux linkage coming from “inactive” magnets). 
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 There is no magnetic link between phase windings. 

 The coil current does not influence the magnetic flux in the air-gap which is set by the 

permanent magnets. 

The initial data of the generator to be designed are as follows: 

-  - input apparent power; 

-  - phase voltage; 

-  – rated angular speed of the rotor;  

-  – supply frequency; 

-  - average magnetic flux density in the air-gap; 

-  – coefficient: , where air-gap flux density under 

the magnets; 

-  - air-gap; 

-  - flux density in the stator core; 

-  - flux density in the rotor core; 

-  - current loading (linear current density of the stator in axial 

direction); 

-  A/ – wire current density; 

-  – ratio of phase voltage to stator emf; 

-  – decreasing flux linkage coefficient; 

-  - ratio of axial stator pole width to total magnet width:  (Fig. 

5.4); 

-  - winding filling coefficient; 
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-  - width of the stator slot closing. 

-  - Remnant magnetic flux density for magnets NdFeB 35; 

-  – Coercive field strength of the magnets ; 

Dimensions of the machine which are to be determined are shown in Fig. 5.4. 

 

 

 

 
 

 

Figure 5.4 Dimensioning details of PMTF machine: a) radial cross-section, b) stator pole view, 

c) axial cross-section view   
 

 

 Determination of generator dimensions. 

 

 Magnet height . Referring to Fig. 5.5, equations for calculating the magnet height can 

be derived. 

The magnet height depends on the type of magnet material (its B-H characteristic) and the 

air-gap. To derive the equation for the magnet height let the half of stator pole rotor 

magnet be considered as in Fig. 5.6.  
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Figure 5.5 Demagnetization part of B-H characteristic for air-gap [65] 

 

Figure 5.6 Half of the stator pole with PM  

 

Assuming stator and rotor core permeability , according to Amper’s Law: 

                                                                                                                 (5.1) 
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where: 

            - magnetic field intensity of the PM 

                - magnetic field intensity in the air-gap 

                - magnet height  

                - air gap width. 

From Eqn. 5.1 the field intensity in the air-gap is: 

                                                             (5.2) 

After multiplication by :  

                                                           (5.3) 

 

Since for NdFeB magnets the demagnetization curve shown in Fig. 5.5 is straight line it can be 

described as: 

                                (5.4) 

For air-gap from Eqn. 5.2:  

                                       (5.5) 

Equaling equations (5.4) and (5.5) for  gives:    

                                                      (5.6) 

At the operation point P  (see Fig. 5.5), thus solving (5.6) for  

                                              (5.7)    
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 Number of pole pairs  is found from: 

                                                                   (5.8) 

 Stator outer diameter  calculation. 

The stator outer diameter can be found from the equation for the input power . Considering one 

phase: 

                                                                                                                                  (5.9) 

where: 

             - is rms current 

             - is rms electromotive force which for sinusoidal changing flux 

equals: 

                                                                                                          (5.10) 

where: 

            - number of turns per phase 

            – maximum in time flux.  

The magnetic flux   is found as: 

                                                          (5.11) 

where:  is the resultant area under the stator pole in the air-gap. 

                                                        (5.12)     

Hence, 

                                                           (5.13) 

Substituting (5.13) into (5.10) the induced phase voltage is: 
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                                          (5.14) 

Expressing the voltage frequency as: 

                                                         (5.15) 

and substituting (5.14) into (5.9) the equation for input power   looks like: 

                                                                                (5.16) 

Since the current loading, 

                                                                                                               (5.17) 

substituting it into (5.9) results: 

                                         (5.18) 

From this equation active surface of the generator  multiplied by the stator width  is 

found: 

                                                                            (5.19) 

 - can be assumed on this stage of calculation. The assumption is based on the choice of the 

designer who can decide about generator proportion as length to the diameter ratio.  

 Pole pitch of the stator poles  at outer diameter is determined by: 

                                                                                                              (5.20) 

Since, according to design configuration (Fig. 5.4 a) 

 Stator inner periphery: 

(5.21) 

 Stator outer periphery:  
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                                                          (5.22) 

The equation (5.22) takes the form: 

                                                                                                 (5.23) 

 Stator pole height: 

                                                                                             (5.24) 

 Stator ring width  

                                                                                                                        (5.25) 

 Now, after obtaining actual stator dimensions input power  of the generator for all three 

phases can be verified as: 

                                 (5.26)                                                

 Magnet axial width: 

                                                           (5.27) 

 Width of the stator core: (see Fig. 5.4):  

                                                   (5.28)                      

 Width of the rotor core: 

                                                  (5.29) 

 Width of the coil: 

                                                         (5.30) 

 Rotor inner diameter: 

                                                                                                       (5.31) 
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 Rotor outer diameter: 

                                                                          (5.32) 

 Determination of generator winding parameters. 

 Due to the voltage drop across generator phase impedance, the output voltage  is 

smaller than emf  and this can be expressed by coefficient . Thus, electromotive force: 

              (5.33) 

 Number of turns  can be found rearranging the equation (5.16) for electromotive force: 

 

                              (5.34) 

 Calculated number of turns  can be rounded by a designer. After this new number of turns  is 

verified to satisfy phase emf: 

                            (5.35) 

 For a three-phase Y-connected supply, depending on load power factor  the current 

rating is obtained : 

                                                                                                                                     (5.36) 

 

 Wire diameter: 

                                                                                                             (5.37) 

 

 

Based on the calculated wire diameter, the wire type can be selected from AWG gauge 

table (Table 5.1) which is shown below.  
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Table 5.1 American Wire Gauge 

 

  

 Coil cross-section area is found (packing coefficient is ignored due to selection of 

rectangular type of wire ): 

                                                          (5.38) 

 Total area of the slot is calculated taking into account winding insulation: 

                                                     (5.39) 

 Height of the coil: 

                                                                                                      (5.40)           

 Actual height of the stator pole : 

                                                   (5.41) 

 Average length of the coil: 

                                                                                   (5.42) 

 Coil resistance: 

                                                                     (5.43) 

http://www.google.com/url?sa=t&source=web&cd=3&sqi=2&ved=0CDEQFjAC&url=http%3A%2F%2Fwww.interfacebus.com%2FCopper_Wire_AWG_SIze.html&rct=j&q=AWG%20table&ei=nm1hTdmZK4TdgQeVnOSFAg&usg=AFQjCNEDuuofDuSH1Yt4r_g1NDcotxV_UA&cad=rja
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where  - resistance of the selected wire in Ω/m (see Table 5.3). 

 

 Example of calculations: 

Magnet height (Eqn. 5.7): 

  = 5.96 mm 

The chosen magnet height:  

 6 mm 

Number of rotor poles  (Eqn. 5.8): 

= 16       

Pole pitch of the stator poles  at outer diameter (Eqn. 5.23).  is chosen to be equal 

120 mm: 

                                         mm 

                Stator inner periphery (Eqn. 5.21): 

Stator inner periphery: 

 mm        

                 Inner diameter of the stator (from Eqn. 5.21): 

= 60 mm 

              Stator pole height (Eqn. 5.24): 

                                          = 30 mm 

             After selecting a value for stator ring width   power  of the generator is verified 

(Eqn. 5.26): 
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             Magnet axial width (Eqn. 5.27): 

 = 16 mm     

             Width of the stator core (Eqn. 5.28):  

                                                        = 11.25 mm   

              Width of the rotor core (Eqn. 5.29): 

 =15 mm    

             Width of the coil  (Eqn. 5.30): 

 17.5 mm 

             Rotor inner diameter  (Eqn. 5.31): 

                                               mm                                                                  

             Rotor outer diameter (Eqn. 5.32): 

                               = 165 mm 

 Determination of generator winding parameters. 

Electromotive force (Eqn. 5.33): 

 

       Number of turns (Eqn. 5.34): 

                           = 66.22  

The chosen number of turns is 66. 

       Number of turns is verified (Eqn. 5.35): 

                         = 39.8 V 
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      Current rating  (Eqn. 5.36): 

                             = 11.546 A 

      The current is chosen to be 11.55 A. 

       Wire diameter (Eqn. 5.37): 

                                    mm 

       From the Table 5.3 AWG 12 wire is selected. Its diameter is 2.05          

       Coil cross-section area (Eqn. 5.38): 

                          

       Total area of the slot is calculated taking into account winding insulation Eqn. (5.39): 

 

        Height of the coil (Eqn. 5.40): 

 = 17.78 mm 

        The chosen value for coil height is 18 mm. 

        Actual height of the stator pole  (Eqn. 5.41): 

 = 33.25 mm     

         Average length of the coil (Eqn. 5.42): 

                                  = 295.3 mm 

         Coil resistance (Eqn. 5.43): 

             

                               

  Calculated parameters are enclosed in Table 5.2 and shown in Fig. 5.7. Detailed drawings of the 

generator parts with all dimensions are enclosed in Apendix A.  
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Note, that some of the dimensions which are shown on the fig 5.7 do not match those which are in 

table 5.2. This is because some of the dimensions were optimized to satisfy the requirements of the 

manufacturer (see Apendix B for more details).  

 

 

          

Table 5.2 Dimensions of the machine 

Parameters Calculated 

Rotor outer diameter  mm 165 

Rotor inner diameter , mm 123 

Magnet height , mm 6 

Magnet axial width , mm 16 

Stator pole height , mm 33.25 

Stator outer diameter mm 120 

Stator inner diameter, mm 30 

Stator ring width , mm 40 

Width of the stator core , mm 11.25 

Width of the rotor core , mm 15 

 

 

 

 

The calculated dimensions were optimized using 3D FEM modeling. The optimization of 

dimensions, which is discussed later, was done in order to satisfy magnetic flux distribution in the 

machine. This flux is shown in Fig. 5.8. The dimensions of the magnetic shunts were determined too 

and Fig. 5.9 shows how the shunts are assembled.  

The flux distribution in axial cross-section of the single phase ring is shown in Fig. 5.10. 

Summarized parameters of the machine used for further analysis are enclosed in Table 5.3. 
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Figure 5.7 Optimized dimensions of the generator: a) radial cross-section, b) stator pole 

view, c) axial cross-section view 

 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 5.8 Magnetic flux distribution in the rotor and stator cores 
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Table 5.3 Stator winding and PMs data 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Shunt assembly 

Stator winding: 

      -   Number of phases 

  -   Number of turns per phase 

      -   Wire   

      -   Load current    

      -  Winding filling factor, kfill 

Magnetic Circuit: 

- Number of rotor poles 

-  Number of stator poles 

PM’s:             
- Type  

- Relative permeability, μ 

- Bulk conductivity, γ      

- Residual flux density,  Br    

- Thickness (radial lengths) 

 

 

3 

66 

AWG 12 

11.55 A 

0.7 

 

p = 16 

N = 8 

 

NdFeB 35 

1.09967  

625000 S/m   

1.2T 

6 mm 
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Figure 5.10 View of magnetic flux distribution in axial cross-section of the single phase ring 

 

    5.3 Performance of the Generator in Steady-State Conditions 

The performance of wind power generator depends primarily on speed of the wind turbine, which 

is dependent on wind speed. Wind speed may change within a broad range.  

 

5.3.1 Analysis of Induced Voltage  

The 3D FEM software allows determining the induced voltage at different speeds. The current 

directly depends on the voltage at constant load impedance, thus the induced emf influences the 

output power of the generator. 

The amplitude of the induced voltage vs speed characteristic is shown in Fig. 5.11. The waveforms 

of induced voltage calculated at speed 600 rpm (rated speed) for models with shunts made of iron and 

laminated steel are shown in Fig. 5.12 a, b. The voltage is distorted with respect to sinusoidal shape. 

This distortion can be measured by the contents of higher harmonics. Applying the Fourier’s series 

analysis for the waveform of emf the spectrum of higher harmonics can be found using FFT (Fast 
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Fourier Transform) function in Matlab 2010 software. The diagram of higher harmonic contents is 

shown in Fig. 5. 14 a, b). 

 

 

 

 

 

 

 

                             

Figure 5.11 Induced phase voltage vs. speed characteristic at no load 

 

 

Figure 5.12 Amplitudes of induced phase voltages for the generators with: a) iron shunts, b) 

laminated steel shunts  
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Figure 5.13 Higher harmonic content of induced voltages of the generators with: a) iron shunts, 

b) laminated steel shunts  

 

 

 

 

 

 

 

For the generator with shunts made of laminated steel the 1-st harmonic is nearly 89% of the 

voltage peak value. The 3-rd harmonic is very high too (42%) and has a significant impact of the 

waveform (Fig. 5.12 b). Also some minor distortions of the waveform are caused by the 7
th 

(3%) and 

9
th 

(4%) order harmonics.  

In case of shunts made of solid iron, voltage waveform of the machine is more of sinusoidal 

shape (Fig. 5.12 a). This is because in this case the 3
rd

 harmonic is lower in its amplitude (21%). The 

1-st harmonic is 88% of the voltage peak value (Fig. 5.12 a). 
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5.3.2 Analysis of Torque Developed by the Machine 

As it was written in previous chapter torque developed by the generator is a key parameter in the 

machine performance. Its magnitude decides about effectiveness of energy conversion, and its 

waveform shows how it changes in time and influences the operation of the wind turbine at a 

generator set. 

The analysis of the generator torque is done on the basis of the results obtained form 3D FEM 

modeling. The waveform of the torque developed by the generator with single phase without 

magnetic shunts is shown in Fig. 5.14 a. This waveform exhibits significant oscillations, which are 

generated by two torque components: electromagnetic torque and cogging torque. The nature of these 

components has been discussed in the previous chapter. The cogging torque component is shown in 

Fig. 5.14 b. As it is seen the percentage of this component in the total single-phase torque is very 

high.  

 

 

Figure 5.14 Torque developed by the generator with single phase without magnetic shunts: a) 

total single-phase torque, b) single-phase cogging component 
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In the generator without magnetic shunts the torque developed by 3 phases is greater and its 

waveform is shown in Fig. 5.15 a. This torque is smoother but still has some ripple. It is measured by 

ripple coefficient defined as follows [66]: 

                                                    (5.44) 

 

 

 

 

Figure 5.15 Torque developed by the generator with 3-phases without magnetic shunts: a) total 

torque, b) cogging component of the total torque 
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The torque ripple is of 14%. The main contribution for this ripple comes from cogging torque, 

which is shown in Fig. 5.15 b. Its amplitude is much smaller than that of the single phase, but still 

high enough to disturb the wind turbine operation. 

         All presented torque waveforms are obtained from 3D FEM simulations for the generator 

without shunts at rated current of 11.55 A. The torque developed by the generator with magnetic 

shunts at the same current is shown in Fig. 5.16 a. Comparing with torque of machine without shunts 

its average value of 21 N•m is greater and the torque ripple is significantly reduced. Its value is equal 

to: 

   = 5% 

     One of the reasons of smaller torque ripple is a significant reduction of cogging torque ( 50% 

reduction) which waveform is shown in Fig. 5.16 b. This shows that that the implementation of the 

magnetic shunts does not only increase the induced voltage but also reduces the torque ripple. This is 

very important since the torque ripple is a source of noise and vibration. And in case of mounting the 

generator on the roof of a house as it is proposed in section 5.7, these negative effects will not bother 

the habitants.  

The total torque developed by the generator can be verified by formula: 

(5.45) 

where - electromagnetic power inside of the machine,  - speed of rotation (rev/sec).  can 

be found as: 

 



 
 

72 
 

N•m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Torque developed by the generator with 3-phases with magnetic shunts: a) total 

torque, b) cogging component of the total torque 

 

 

 

 

 

5.3.3 Analysis of Output power of the Generator 

The output power depends not only on the induced voltage but also on the circuit parameters. 

The per-phase equivalent circuit of the generator is shown in Fig. 5.17 
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Figure 5.17 Equivalent circuit of the generator 

 

Flux linkage of the coil   and coil inductance , using 3D FEM model of the generator for 

one phase.  From the equivalent circuit of the generator (Fig. 5.17) the current :  

(5.46)  

where   is emf of the generator at rated speed of 600 rpm. Varying load resistance  in the 

range from 0 to 12 Ohms the dependency of current  from load resistance is obtained. This 

dependency is shown in Fig. 5.18. 

    

Figure 5.18 Output current as a function of load resistance of the generator  
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The load resistance which is relevant to rated current of the generator (11.55 A) is equal to 3.5 

Ohms.  

The electromotive force : 

(5.47) 

The voltage   at the generator terminals: 

(5.48) 

Expressing the voltage as: 

           (5.49) 

and substituting it in (5.48) the equation looks like: 

(5.50) 

 

 From (5.48) phase current  

                                                                

(5.51)                                                                       

 

The output power for 3-phases is expressed as follows: 

                                             (5.52) 

Expressing frequency  through rotary speed :  

(5.53) 

The formula for the output power  is as follows: 
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               (5.54) 

where  is rotary speed in rpm.  

 

 

 

Table 5.4 Equivalent circuit parameters 

 

 

 

 

 

 

 

 

The characteristics of output power vs. rotor speed calculated using formula 5.54 is shown in 

Fig. 5.19. The rated output power for the 3-phase generator with magnetic shunts at rated speed 

( ) is equal: . The difference between output powers of the generators 

with magnetic shunts and without them is significant as it can be seen on the figure. This is because 

the induced voltage of the generator without shunts is much smaller due to the negative effect of 

“unused magnets” what was discussed in Chapter 4.  

The terminal voltage  can be found using equation 5.48. The terminal voltage versus speed 

characteristic is shown in Fig. 5.20. 

Calculation parameters of the equivalent circuit are enclosed in Table 5.4. 

 

PARAMETER 

 

 

VALUE 

Number of rotor poles, p 

Flux linkage in the coil at rated speed at no load,  
Coil inductance,  

Coil resistance,  

Frequency of the rotor,  

Load resistance  

16 

0.135 Wb∙turns 

0.0037 H 

0.101Ω 

80 Hz 

3.5 Ω 
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Figure 5.19 Output power vs speed characteristic at rated load resistance =3.5 Ω 

 

Figure 5.20 Terminal phase voltage vs speed characteristic at rated load  

resistance =3.5 Ω  

 

 

 

 

The amplitude of induced voltage of the generator with magnetic shunts is 60 V (see Fig. 5.12 a, 

b). In case of the generator without magnetic shunts the induced voltage is 47% lower. The amplitude 

of this voltage is shown in Fig. 5.21.  
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Figure 5.21 Induced voltage of the machine without shunts 

This indicates the important role of magnetic shunts. 

The rated parameters of the generator are enclosed in Table 5.5. 

      

Table 5.5 Rated parameters of the generator 

 

PARAMETER 
 

VALUE 

1. Rated current  

2. Rated speed 

3. Rated phase voltage (amplitude) 

3. Rated power 

4. Number of rotor poles 

 

11.55 A 

600 rpm 

60 V 

1,380 kW 

16 

 

In order to conclude what have been gained by applying the generator with the internal stator 

instead of the version with external stator the volumes of both design versions should be compared 

assuming the same power. The power of both versions is equal if the air-gap diameters are the same. 

Since the stator poles have the same height and assuming the same rotor yoke thickness the outer 

diameter of the generator with internal stator is: , and with outer stator is: 
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. Thus, the power  to volume  ratio of the generators with inner and outer stators 

consequently is: 

 

 

 

It means that the internal stator generator power density is 21% higher than that of the outer stator 

generator. 

 

 

5.4 Thermal Analysis of the Generator 

In the PM synchronous machines there are following sources of heat: 

- Stator core 

- Stator winding 

- Stator magnetic shunts 

- Permanent magnets 

- Rotor core. 

In general, the amount of heat generated in permanent magnets and in the rotor core is ignored 

due to its negligible amount. This heat is generated by the AC components of magnetic flux, which is 

produced when the flux density distribution in the air-gap is not sinusoidal one.  

Heat that is produced in a stator core and stator magnetic shunts is caused by eddy currents 

induced in the core and hysteresis losses. Since the stator core and magnetic shunts are laminated 

these loses are relatively small and also can be omitted. However, if they are made of solid material 
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like steel, copper or aluminum, it is reasonable to consider them separately since the heat generated 

by the eddy currents is much greater than the heat produced in laminated shunts.  

The main source of heat is the losses in the stator winding. Thermal analysis of the machine was 

done applying ePhysics 12v software which is based on Finite Element Method. For description of 

the software and basic equations used for temperature flow calculation see Chapter 2, subsection 2.2 

Finite Element Method. 

Due to a complexity of the generator structure, temperature analysis is based on the simplified 

model outlined by the following assumptions: 

1. There is no heat transfer in axial direction. It means that no heat end effects at both ends of the 

generator are considered. 

2.  The temperatures of each of the machine segments are equal ( ) and don’t 

influence each other (Fig. 5.22). The overall temperature of the segment is not affected when 

the segment is transformed into rectangular shape (Fig. 5.23) when keeping the element 

volumes the same. The necessity of transforming the machine segment into rectangular shape 

is explained by the fact that in rectangular shapes boundary conditions can be assigned more 

precisely.  

 

Figure 5.22 PMTF generator segment selected for temperature analysis  
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3. Ambient temperature of generator elements on the beginning of the simulation is 40  C. 

4. The surfaces of the elements have perfect smoothness. 

5. Air is moving synchroniously with the generator elements, and doesn’t not contribute to 

cooling. 

 

        Figure 5.23 Generator segment in rectangular form  

The computational simplified model of the generator created in ePhysics 12v is shown in Fig. 

5.24.  

 

Figure 5.24 ePhysics 12v temperature computational model 
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Blocking ability of the negative flux for shunts made of different metals is almost the same and varies 

between 3-5%. However, the temperature distribution in the generator segment might be dependent on the 

shunt material. Shunts made of: laminated steel, solid iron, aluminum, and cooper were selected for the 

simulation model. The results of simulations carried out at rated current and rated frequency are enclosed 

in Table 5.6. 

 

Table 5.6 Temperatures of the generator elements  

Temperature 

of 

Model with 

laminated steel               

shunt 

Model with 

 iron   shunt 

 Model with 

 copper  shunt 

Model with 

aluminum 

    shunt 

Time when 

temperature 

reaches steady 

state, Hr 

Coil  164  C  177  C  178  C  194  C  2.7  

Shunt  78  C  182  C  182  C  201  C 3.8  

PM  67  C  121  C  119  C  170  C  4.3  

Outer core  55  C  92  C  89  C  112  C  5.2  

Housing  48  C  74  C  80  C  97  C  6.4  

 

Temperatures of the generators’ elements obtained from simulation are expected to be higher as in 

reality due to the assumptions.  

As the results show, to use solid iron, aluminum, or cooper shunts cause an increase of machine 

temperature. The maximum temperature which the “H” class of coil insulation can withstand is 180 

C. In case of iron shunts the coil temperature is very close to the permissible value. In case of 

aluminum shunts the coil will be overheated. Laminated steel magnetic shunts are better in terms of 
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temperature. It can be explained by the fact that eddy currents in laminated steel material are very 

small and do not contribute to high power losses. 

The temperature graph of the laminated steel magnetic shunt along with coil temperature is shown 

in Fig. 5.25. 

 

 

 

 

Figure 5.25 Temperature of the laminated steel shunt and coil 

 

 

 

 

After 3 hours of generator operation at rated 600 rpm speed the temperatures of the shunt and coil 

reach steady-state. 
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5.5 Optimization of Magnetic Shunt Structure   

 

 

 The role that magnetic shunts play in PMTF generator has been discussed in Chapter 4. These 

shunts do not only allow increasing the output power at the given generator volume, but also 

contribute to diminishing of torque ripple. To play this role in most efficient way the shunts must be 

adjusted to the particular generator construction. 

If shunts are made of laminated steel and the distance to adjacent stator poles is small, the 

magnetic field concentrated on the shunt is partially transferred to these poles. Due to this, the 

magnetic field density in the poles is significantly reduced. In Fig. 5.26 two trapezoidal shunt shapes 

with corresponding to them negative flux linkages in the coil, detected in steady-state simulation, are 

shown. In Fig. 5.26 a) where the distance between shunts to adjacent poles is less than 1 mm, the 

negative flux linkage is higher than that where the distance from shunts to poles is more than 2 mm 

(Fig. 5.26 b). Optimized shunt dimension for the represented generator with smallest negative flux 

linkage value are shown in Fig. 5.27. 

Shunts can be attached to the generator in both ways: either to the stator poles, or to the shaft. If 

the shunts are attached directly to the stator poles as it is shown in Fig. 5.28, then the flux from 

“inactive” magnets will diminish the total flux linkage of the coil making the induced voltage small. 

The calculations show that in this case the voltage induced in the coil is reduced by 45%. The voltage 

waveform is shown in Fig. 5.29. To solve this problem another structure is proposed (Fig. 5.30) where 

shunts are attached to the iron rings on both sides of the generator which in turn are supported by the 

bars that are radially oriented and attached to the stator shaft.  
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Figure 5.26 Negative flux linkage from “inactive” PMs at the gap between shunts and stator 

pole: a) less than 1 mm, b) more than 2 mm  

 

 

 

 

Figure 5.27 Optimum shunt dimensions 
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Figure 5.28 Shunt connected to the stator poles 

 

Figure 5.29 Induced voltage of the generator with shunts attached to stator poles 
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Figure 5.30 Shunt assembly fixed to the stator shaft  

 

With the new design of shunts’ attachments induced voltage of the generator is as it was determined 

in section 5.3.1. Its waveform is shown in Fig. 5.31. 

 

 

 

Figure 5.31 Induced voltage of the generator with shunts connected to the iron rings    
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5.6 Generator Performance in Dynamic Condition 

To evaluate generator performance in dynamic condition a circuit model of the generator is 

applied.  This model represents the generator under the following assumptions: 

 all elements of the generator are linear and no core losses are considered; 

 electromotive force  changes sinusoidaly with the rotational electric angle θ; 

 generator terminals are connected to the 3-phase resistive load; 

 due to the surface mounted permanent magnets winding inductance is constant (does not 

change with the  angle).  

 cogging torque is neglected.  

The generator model is graphically represented by the circuit diagram of 3-phase winding shown 

in Fig. 5.32, and its mechanical model is shown in Fig. 5.33. 

 

 

 

 

 

 

 

Figure 5.32 Circuit diagram of 3-phase winding of the generator     
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Figure 5.33 Mechanical model of the generator     

They are described by the following equilibrium equations: 

- voltage equations: 

                                                   (5.55) 

                                                                                    (5.56) 

                                                                           (5.57) 

where: 

 -  phase resistance 

 -  phase self-inductance equal to synchronous inductance   

 - load phase resistance  

 - phase currents 

 - phase voltages induced in 3-phase generator winding  

 - generator terminal phase voltages. 

The voltages  depend on rotational electrical angle  and on rotor speed  

according to equations: 

                                                        (5.58)         

                                                                                       (5.59)         

                                               (5.60)     
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The electrical angle  is related to mechanical angle  by equation: 

                                                               (5.61) 

where mechanical angle  is reffered to the position of the rotor magnets as shown in Fig. 5.34 

 
Figure 5.34 Mechanical angle   with rotor speed                                                                  

The equations 5.55-5.57 written in matrix form are as follows: 

                                                   (5.62) 

Equations 5.52-5.54 written in a form of matrix: 

                                 (5.63) 

Torque equation: 

                                                  (5.64) 

where  is the torque developed by the generator:  

(5.65) 
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                                                                                                                 (5.66) 

                                                       (5.67)     

                                                                                                            (5.68) 

 - Inertia torque:  

(5.69) 

 - Viscous friction torque:  

                                                               (5.70) 

 Torque of the turbine driving the generator  

Combining all the above equations, the system in state-space form is:   

                                                               (5.71) 

Where coefficients  and : 
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                                                     (5.74) 

                                                                                                                          (5.75) 

 

The generator described by the above equations was modeled in Matlab/Simulink and its block 

diagram is shown in Fig. 5. 35. 

A moment of inertia of the rotor was determined from the following equation: 

 

                                                                        (5.71) 

 

where: 

 - moment of inertia of the turbine (assumed value is 0.003  ) 

          is the rotor mass 

 - internal diameter of the rotor 

           – external diameter of the rotor.  

 

Assuming that rotor magnets and rotor core have the same mass density  , which is for iron 

7850 kg/ , the mass is found:  

                                                              (5.72) 

where  – rotor volume: 

                          (5.73) 

                                          kg. 



 
 

92 
 

                             

Block diagram parameters are enclosed in Table 5.7 

Table 5.7 Block diagram parameters of the generator  

 

PARAMETER 

 

 

VALUE 

1. Inductance of the coil  

2. Coil resistance  

3. Moment of inertia of the rotor 

4. Damping coefficient  

5. Number of rotor pole pairs  

6. EMF constant  

7. Load resistance  

8. Turbine torque  

 

 

 

 

 

 

 

 
 

 

In the simulation the rotor is driven by the rated torque (depending in reality on wind speed) and 

starts from zero rotor speed, being loaded by rated resistance =3.5 Ohms. After the steady-state 

speed operation is reached, the load resistance changes in step.  

The simulation results are shown in Figs. 5.36 and 5.37.  When load resistance suddenly 

increases from 3.5 to 3.5∙1.5 Ohms, rotor initially rotates with the same speed because of inertia. That 

is why electromotive force  is constant. The phase current is found using equivalent circuit of the 

machine:  . Since, , and  are constants, the current is dependent on load 

resistance only; and if the load resistance increase, the current decrease (Fig. 5.36 a). Output power of 

the generator is decreased too according to the equation: . Electromagnetic torque of 

the generator decreases if current decreases. Since the driving torque remains constant, the speed of 

the machine increases. (Fig. 5.36 b). This causes higher emf to be induced in the winding (Fig. 5.36 

a). Higher emf brings current value up close to the initial level (Fig. 5.36 a). Electromagnetic torque 
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 is approximately equal to driving torque.  Output power of the machine is increasing  due to 

increase of the speed, according to the equation: (Fig. 5.36 b).  

In Figs. 5.37 a) and b) electromechanical parameters of the generator are shown when the load 

resistance changes from 3.5 to 3.5/1.5 Ohms. In this case electromechanical characteristic behavior is 

opposite to what was discussed above. 

 

 

 

 

 

Figure 5.35 SIMULIMK model of the PMTF generator     
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Figure 5.36 Electromechanical parameters of the generator in dynamic condition at load 

resistance changing from 3.5 Ω to 3.5*1.5 Ω. a) Induced and phase voltages with phase current, 

b) output power, speed and electromagnetic torque 
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Figure 5.37 Electromechanical parameters of the generator in dynamic condition at load 

resistance changing from 3.5 Ω to 3.5/1.5 Ω. a) Induced and phase voltages with phase current, 

b) output power, speed and electromagnetic torque 
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5.7 Generator Prototype Test 

 

 

 

 

The generator prototype was built according to the drawings discussed in Chapter 5 and 

presented in Appendix A. Machine was manufactured and tested by “Komel” the Polish company for 

the University of Nevada – Reno. The pictures of the machine prototype are shown in Fig. 5.38 a-d.  

 

 

 
 

 

 

 

Figure 5.38 PMTF machine prototype: a) one phase stator poles on the shaft, b) shaft with 3 

rings of stator poles, c) stator with magnetic shunts, d) rotor with permanent magnets  



 
 

97 
 

The magnetic shunts were made of solid iron due to the problem with assembling of laminated 

shunts. 

No load test at rated speed 600 rpm was done in order to record induced voltages in the 

generator’s windings. Phase voltages of the machine obtained experimentally and calculated using 3D 

model are show in Fig. 5.39. 

 

Figure 5.39 Calculated and measured induced voltages of the generator’s windings 

The amplitudes of phase voltages calculated and measured during the laboratory test are almost 

the same which proves the the magnetic circuit of the generator was designed properly. The small 

differences in amplitudes of 3-phase voltages may result from inaccuracy of manufacturing of 

generator magnetic circuit or stator coils. 
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The power losses of the generator measured during no load laboratory test at rated speed 600 

rpm are equal to 415 W. Such high power losses are caused mainly by eddy currents induced in the 

magnetic shunts. According to computer simulation these power losses are of 316 W. The distribution 

of eddy currents on the magnetic shunts is shown in Fig. 5.40 confirms this result.  Some small power 

losses of 16 W generated in aluminum distance rings placed between stator phases. The rest of the 

power losses are generated in the stator core and mechanical friction. Some negligible losses losses of 

power are expected to be in permanent magnets. 

 

 

Figure 5.40 Eddy current density on the shunt’s surface 

 

 

When magnetic shunts are made of laminated steel, the total power losses at no load test 

according to 3D FEM simulation are of 20 W.  
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Conclusion: the solid iron magnetic shunts should be replaced by laminated shunts. It is too 

difficult to do if these shunts are made of magnetic powder. 

 

5.8 Gearless Wind Power Generator Aggregate  

Gearless wind power generators are the object of many papers [14, 15]. Their advantage over the 

generators driven by the wind turbine through the gear is not only in higher efficiency and reliability 

but also in lower capital cost.  

The considered generator with inner stator offers additional advantage. The wind turbine can be 

directly combined with the generator rotor as a one aggregate. Such a construction of the generator of 

1 kW, proposed for small household can be mounted in horizontal (Fig. 5.41 a) and vertical (Fig. 5.41 

b) positions on the roof of a house. To meet the need for greater power more aggregates can be used 

(Fig. 5.42). 

a) 

 

 

Figure 5.41 Generator aggregates: a) at horizontal position, b) at vertical position 
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Figure 5.41 (cont.) 

b) 

 

 

Figure 5.41 Generator aggregates: a) at horizontal position, b) at vertical position 

 

Figure 5.42 5 generators combined into one aggregate  

 

Considered generator, can be combined with rotating half-cylinder which is shown in Fig. 

5.43.  The cylinder is attached to the generator shaft with help of mechanical systems which allows its 
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rotating. The direction of the half-cylinder’s rotation is achieved by the governor blade which is 

always in parallel with wind flow.  

 

Figure 5.43 Turbine system for the generator mounted on the roof 
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CHAPTER 6: PMTF GENERATOR WITH DOUBLE ARMATURE 

6.1 General Description of the Generator Construction  

Based on the improved topology of 2010 discused in Chapter 5 a new PMTF machine design 

with double winding  is proposed. The machine consits of two PMTF generators combined into one 

structure which have common rotor with permanent magnets on it (Fig. 6.1 ). 

 

Figure 6.1 Single-phase PMTF machine with outer winding  

 

The dimensions of the stator poles of outer and inner armatures, as well as all PMs are the same 

as those calculated for the generator discussed in Chapter 5. The difference is only in outer diameter 
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of the machine since the outer winding with corresponding magnetic poles was added. The rotor 

consists of an iron ring which holds the magnets. The ring is shown separately in Fig.6.2. 

 

Figure 6.2 Rotor ring for holding PMs 

Inner and outer stator poles face each other, so that magnetic circuit  with flux Ф circulates in the 

the outer and inner poles as it shown in Fig. 5.35. 

 

                                  Figure 6.3 Magnetic circuit of the machine 
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The number of turns in each of the coils are the same.  

6.2 Performance of the Generator in Steady-State Condition 

 

6.2.1 Analysis of Induced Voltage  

Induced voltage of the machine with double winding at rated speed 600 rpm is shown in Fig. 6.4 

where two voltages are shown when the windings are not connected.   

 

Figure 6.4 Induced phase voltages in both windings   

The induced voltage in outer winding is slightly higher than the voltage of inner winding. This 

can be expalined by the  fact, that the PMs’ square of surface facing the outer armature poles are 

larger than that of the inner armature PMs. This difference between voltages in both windings can 

play negative role if the windings are connected in paralel like it is shown in Fig. 6.5 a. Current  

circulating in the circuit between different voltage potentials will lead to winding heating even if 

there is no load connected. To avoid that, two windings are connected in series (Fig. 6.5 b). 
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Figure 6.5 Equivalent circuit of the generator with double armature, a) windings are connected 

in parallel, b) windings are connected in series 

 

  Induced voltage of the generator is changing with turbine speed. The relationship between 

induced phase voltage and turbine speed of the machine with double stator for connected in series 

windings is shown in Fig. 6.6. Comparing it to the generator discussed in Chapter 5, it can be 

concluded that the machine with double armature promises two times higher induced voltage over the 

whole range of turbine speed. 

The slight distortion of the voltage graph (Fig. 6.4) points on presence high order harmonics 

which were discussed in Chapter 5. Harmonics are caused mainly by the nonsinusoidally distributed 

magnetic field in the air-gap.  
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Figure 6.6 Induced voltage of the generator with different rotor speeds 

 

6.2.2 Analysis of Torque Developed by the Generator 

The importance of torque analysis for electric machines was underlined in Chapter 5 where 1 kW 

generator with single armature was represented. The major difference between torque curves of the 

machines with one armature (Chapter 5) and double armatures (presented in this Chapter)  is in the 

fact, that the last one has a common rotor where PM’s interact at the same time with outer and inner 

magnetic stator poles. This should produce two times higher torque than that obtained from the 

generator with one armature. Also, cogging torque curve is different which will have an influence on 

the resultant torque produced by the generator. Cogging and resultant torques of the machine with 

double armature for one phase ring (Fig. 6.1) are shown in Fig. 6.6. As it was discussed in Chapter 5, 

cogging torque of PMTF generator is high for one-phase ring structure. However, due to presence of 

magnetic shunts (discussed in Chapter 5), it is much smaller. Resultant average torque of the machine 

for one phase ring at rated phase current equal to 11.55 A is 14 N∙m.  
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     Figure 6.7 a) Cogging torque of the generator with double armature (one phase ring), b) 

resultant torque of the generator with double armature (one phase ring) with phase current of 

11.55 A 

 

When all 3-phase rings are considered as it shown in Fig. 6.7, the cogging torque of the generator 

will be lowered by the magnet skew between each of the phases (see Chapter 5).  Hence, the resultant 

torque, which is 3 times higher than the torque for one-phase ring, is not rippled that much.  

Cogging torque of the generator with double armature for 3-phase rings is shown in Fig. 6.7 a, 
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Figure 6.8 3-phase PMTF machine with outer winding  

 

 

and the resultant torque is shown in Fig. 6.7 b. The average value of the resultant torque is 42.5 N∙m 

which is two times higher than the torque of the machine with one armature discussed in Chapter 5. 

Torque ripple is 5% which is relatively small for PMTF machines class. 
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Figure 6.9 a) Cogging torque of the generator with double armature (3 phase-rings), b) 

resultant torque of the generator with double armature (3 phase-rings) with phase current of 

11.55 A 

 

 

6.2.2 Analysis of Output Power 

Output power of the generator was described in section 5.3.3. In case of the generator with 

double winding, terminal voltage: . This gives the output power of the machine with 
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double stator to be almost two times higher than that of the machine with one armature described in 

Chapter 5. The terminal voltage vs. speed at load phase resistance of 3.5 Ω is shown in Fig. 6.10. The 

load resistance was determined using formula 5.46, and the result of calculation is shown in Fig. 5.18. 

 

Figure 6.10 Terminal voltage of the generator with different rotor speeds 

Output power of the machine with double stator for 3 phases is shown in Fig. 6.11 and equals to 

2200 W at rated speed.    

 

Figure 6.11 Output power of the generator with different rotor speeds 
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 The rated parameters of the generator with double armature are enclosed in Table 6.1. 

Table 6.1 Rated parameter of the generator with double armature 

 

PARAMETER 
 

VALUE 

1. Rated current  

2. Rated speed 

3. Rated phase voltage (amplitude) 

3. Rated power 

4. Number of rotor poles 

 

11.55 A 

600 rpm 

100 V 

2,2 kW 

16 

 

6.4 Comparison of Different Designs of PMTF Machines Studied in the Dissertation  

Three types of machines that were studied in the dissertation are shown in Fig. 6.3 a-c. 

 

 

a) 

      

 

 

b) 

 

 

 

 

 

Figure 6.12 Single phase rings of PMTF machine designs studied in the dissertation: a) with 

internal rotor, b) with external rotor, c) with double armature 
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Figure 6.12 (cont.) 

 

 

  c) 

 

 

 

 

 

 

 

Figure 6.12 Single phase rings of PMTF machine designs studied in the dissertation: a) with 

internal rotor, b) with external rotor, c) with double armature 

 

 

 

These are: PMTF machine with internal rotor (according to F. Giearas’ patent), with external 

rotor and the machine with double armature. In order to compare three different designs, output 

power to volume ratios for each of them were found.  They are as follows: 

 Generator with external stator : 290 KW/m^3  

 Generator with internal stator : 368 KW/m^3  

 Generator with double armature : 512 KW/m^3  

 

It means that PMTF machine studied in this dissertation with external rotor was modified to the 

design which offers higher power to volume ratio than that with internal rotor.  

In case of the machine with double armature, the power of the machine was increased in two 

times, but machine outer diameter only by 30%, which gave the highest power to volume ratio among 

all the designs studied in the dissertation. 
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CHAPTER 7: CONCLUSIONS AND FUTURE SCOPE OF STUDY 

 

A main goal of this dissertation was to study a PMTF generator in order to improve its 

performance. The interest to PM AC generators has been increased recently because they bring 

following benefits comparing to conventional generators: 

- no electrical energy is absorbed by the field excitation system, and thus there are no excitation 

losses which means an increase in the efficiency.  

-  higher torque and output power per volume than when using electromagnetic excitation.  

- better dynamic performance than generators with electromagnetic excitation (higher magnetic 

flux density in the air gap). 

- low maintenance requirements. 

Because of this, PM machines are used widely nowadays. They can be met in drives for 

electric cars, ship propulsion mechanisms, and various industrial applications. PM generators are 

applied more and more to generate electricity from wind and ocean energy.  

The dissertation began with studying the newest topology of PMTF machine patented by G. F. 

Gieras in 2010. Machine prototype which was built and implemented significant part of this idea 

showed certain disadvantages of the machine design. The output power of the machine appeared to be 

two times lower than that what was expected [29].  

With help of 3D FEM modeling, the main problems of the machine design were identified and 

sloved. The most serious problem was that magnetic flux density in the stator poles was drastically 

weakened by the magnetic field of “inactive” magnets. Necessary steps for improving machine 

performance were undertaken and implemented into its design. Chapter 5 discusses the modified 

topology of PMTF machine with outer rotor, where magnetic field coming from “inactive” magnets 

was blocked by magnetic shunts embedded into stator structure. In this case, magnetic field density in 
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the stator poles was no longer seriously affected by inactive magnets and the output power of the 

generator was 70% higher than that of the machine without shunts. However, when these shunts are 

made of solid iron, due to high eddy currents induced on their surface, power losses of the generator 

are very high. Temperature analysis which was done in the dissertation shows that iron magnetic 

shunts are one of the most significant sources of heat in the machine. When the shunts are made of 

laminated steel, the power losses in the shunts are negligible, and shunts are not overheated.  

Proposed design of the PMTF machine with outer rotor allowed combining the generator with 

direct drive turbine. Such a wind turbine can be mounted on the house roof to satisfy household needs 

in electricity for a small house.  

To maximize power to volume ratio of the PMTF machine, new design of the machine with 

double coil was introduced. In this case, machine volume to power ratio was 30% higher than it was 

in the previous designs studied in the dissertation.  

Summarizing all of the results achieved by this study, the following conclusions can be 

formulated: 

1. The given original PMTF generator of topology 2010 has around 60% of its predicted power  

mainly due to the large negative flux linkage that comes from “inactive” permanent 

magnets.  

3. The magnetic shunts implementation into the generator structure almost eliminated the 

negative flux linkage giving rise to induced voltage and power by 70%. 

3. Magnetic shunts significantly reduced cogging torque of the generator. 

4. The generator structure with internal stator gives higher power to volume ratio and allows 

combining it with the wind turbine as a compact aggregate that was proposed. 
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5. Laboratory test of the prototype which was built according to the design discussed in 

Chapter 5 proves that magnetic shunts block 70% of negative magnetic flux coming from inactive 

PMs.  

6. Laboratory test also shows that if the shunts are made of pure iron, there are power losses 

caused by eddy currents induced on the magnetic shunts’ surface. To eliminate this problem, 

magnetic shunts have to be made whether of laminated steel or magnetic powder. 

8. The new topology of PMTF machine with double stator which was proposed allows 

increasing the power density (power to volume ratio) by 30%. 

Future scope of study can include building a computer model of the generator connected to the 

battery for providing power for a small electric grid which can be a house. Control system has to be 

developed to prevent the generator from rotating at high speeds when there is no need in power, or 

weather is extremely severe.  

3D FEM model of the generator with shunts made of magnetic powder has to be verified for 

performance. Stress analysis of the model has to be done to make sure that shunts are not displaced 

during generator operation because of high attraction force of the PMs. Future scope of study also has 

to be directed on making manufacturing process for the machine easier. 
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APPENDIX A: COMPLETE DRAWINGS OF THE GENERATOR WITH 

CALCULATED DIMENSIONS 

In this appendix included the drawings which were sent to manufacturer “Komel”. All these 

dimensions were optimized during 3D FEM analysis to satisfy the requirements of manufacturer. In 

more details the optimization process is described in Apendix B.  

The last drawing (A.9) which is included in this Apendix, is an axial crossection sketch of the 

generator, where some differences in geometry and dimensions introduced by the manufacturer can 

be seen.  

 

 

 

Figure A.1 General view of the machine design  
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Figure A.2 Vertical and horizontal cross-section of the machine with basic dimensions   
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a) 
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Figure A.3 a) Dimensions of the pole shoe, b) 3D view of the pole shoe    
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a) 
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Figure A.4 a) Dimensions of the coil, b) 3D view of the coil inside of magnetic circuit 
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a)  

              

 

b) 

                        

 

c) 

                                      

 

 

 

Figure A.5 a) Dimensions of rotor assembly (front cross-section), b) dimensions of magnet 

assembly (side cross-section), c) 3D view of the rotor yoke with PMs 
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Figure A.6 Dimensions of magnets’ axial layouts  

 

                                             

Figure A.7 Stator assembly dimensions   
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Figure A.7 (cont.) 

 

                               

 

Figure A.7 Stator assembly dimensions   

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8 Stator assembly with magnetic shunts in 3D view    
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APPENDIX B: OPTIMIZATION OF GENERATOR DIMENSIONS 

This appendix contains information about how magnetic circuit dimensions were optimized to 

satisfy a request of manufacturer. Polish manufacturer “KOMEL” which built the prototype of the 

machine, suggested to connect the lamination of magnetic poles with iron bolts with the diameter of 3 

mm. as it shown in Fig. B1.   

 

Figure B.1 Magnetic pole with connecting bolts 

 

The bolts which go through the magnetic pole cause saturations of magnetic flux circulating in 

the poles. This saturation significantly drops magnetic flux density in the pole and consequently the 

flux linkage. Magnetic field distribution of the pole without and with bolts is shown in Figs. A.2 a, b. 

The magnetic flux density is equally distributed in the pole without bolts (Fig. A.2 a) and its value is 

1.6 T. The flux linkage corresponding to the part of the coil shown on the picture is 0.7 mWb. In case 

of the pole with iron bolts (Fig. A.2 b), the average magnetic density in the pole is 40-45% lower as it 

is in the pole without bolts. The flux linkage is also dropped to 0.5 mWb. This is caused by the 

saturations along the bolts where magnetic field produced by the PMs cannot go through the pole. In 

total 25% of output power of the generator is lost when the poles connected with bolts as it shown in 
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Fig. A.2 b. To eliminate this problem, magnetic poles have to be widened in both ways for 2 mm to 

create more pass for magnetic flux in the pole. The new pole width  is now 44 mm. The magnetic 

flux density of the widened pole is shown in Fig. A.3 and its value is 1.6 T which gives the same flux 

linkage as the pole indicated in Fig. A.2 a. 

 

 
 

Figure B.2 Magnetic field density and flux linkage for: a) magnetic pole without bolts, b) 

magnetic pole with bolts  

 

 

 

Figure B.3 Magnetic field density in the widened magnetic pole 
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APPENDIX C: M-FILE FOR CALCULATING LOAD RESISTANCE OF THE 

GENERATOR DISCUSSED IN CHAPTER 5 

N=66;                         % Number of turns 
p=16;                         % Number of poles 
R=0.047;                      % Radius of the coil (m) 
Nc=1;                         % Number of coils 
Ls=0.0037;                    % Coil Inductance (H) 
q=0.13;                       % Flux linkage of the generator with shunts(Wb*turns) 
Ra=0.101;                     % Reisistance of the coil (Ohms) 
n=600;                        % Rated speed (rpm) 
Lc=2*pi*R;                    % Average lenght of the coil (m) 
Ef=4.44*n.*p/120*q ;          % Induced voltage (V) 
RL=0:12/100:12;               % Load resistance range (Ohms) 
Xl=2*pi*n.*p/120*Ls;          % Inductive reactance (Ohms) 
Z=sqrt((RL+Ra).^2+Xl^2);      % Impedance (Ohms) 
Ia=Ef./Z;                     % Output current  

  
CLF 
figure(1) 
plot (RL, Ia), xlabel ('Load resistance [Ohms]'), grid  
ylabel ('Output current [A]') 
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APPENDIX D: M-FILE FOR CALCULATING STEADY-STATE CHARACTERISTICS 

OF THE GENERATOR DISCUSSED IN CHAPTER 5 

N=66;                             % Number of turns 
p=16;                             % Number of poles 
R=0.047;                          % Radius of the coil (m) 
Nc=1;                             % Number of coils 
Ls=0.0037                         % Coil Inductance (H) 
q=0.13;                           % Flux linkage of the generator with 

shunts(Wb*turns) 
q1=0.075                          % Flux linkage of the generator without shunts 

(Wb*turns) 
Ra=0.101;                         % Reisistance of the wire (Ohms) 
RL=3.5;                           % Load resistance (Ohms) 
Lc=2*pi*R;                        % Average lenght of the coil (m) 
n=0:800/100:800;                  % Speed range (rpm) 
Ef=4.44*n.*p/120*q ;              % Induced voltage of the generator with shunts (V) 
Ef1=4.44*n.*p/120*q1              % Induced voltage of the generator without shunts 

(V) 
Xl=2*pi*n.*p/120*Ls;              % Inductive reactance (Ohms) 
Z=sqrt((RL+Ra)^2+Xl.^2)           % Impedance (Ohms) 
Ia=Ef./Z;                         % Output current of the machine with shunts (A) 
Ia1=Ef1./Z;                       % Output current of the machine without shunts (A) 
Vph=Ia*RL;                        % Terminal voltage of the machine with shunts (V) 
Vph1=Ia1*RL;                      % Terminal voltage of the machine without shunts 

(V) 
Pout=3*RL*Ia.^2                   % Output power of the generator with shunts (W) 
Pout1=3*RL*Ia1.^2;                % Output power of the generator without shunts (W) 

  
CLF 
figure(1) 
plot(n,Pout, n, Pout1),xlabel('Speed [rpm]'), grid 
ylabel('Output power [W]') 
figure (2) 
plot (n, Vph, n, Vph1), xlabel ('Speed [rpm]'), grid  
ylabel('Terminal voltage [V]') 
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APPENDIX E: M-FILE FOR ANALYTICAL CALCULATION DIMENSIONS OF THE 

MACHINE DISCUSSED IN CHAPTER 5 

 

% designing of transverse-flux generator 
%Data 
Sout=1200;        %output power (W) 
Vp=60/sqrt(3);    %phase voltage (V) 
n=600;            %rotary speed (rpm) 
f=80;             %frequency (Hz) 
p=120*f/n         %number of magnetic poles  
Bav=0.9;          %average flux density in the air-gap (T) 
Cm=0.9;           %coefficient for air-gap flux density: Cm=Bav/Bm  
Bm=Bav/Cm;        %air-gap flux density under magnets (T) 
g=0.0015;         %air-gap (m) 
hM=input('permanent magnet thickness='), %permanent magnet thickness from B-H 

curve =0.0061 m  
BsFe=1.6;         %flux density in the stator core (T) 
BrFe=1.2;         %flux density in the rotor core (T) 
J=19000;          %current loading (linear current density of the stator (A/m) 
Jw=4;             %wire current density (A/mm^2) 
KE=0.87;          %KE=Vp/E 
Kn=1;             %negative flux linkage coefficient 
Km=0.8;           %ratio of axial stator pole width/total magnet width 
Kcu=0.7;          %winding filling coefficient 
bFe=0.004;        %width of the stator slot closing (m) 

  
%calculation of the stator and core dimensions 
DW2=Sout*60/(1.06*pi^2*p*n*Bav*J*Kn*KE); %active surface of the generator (m^2) 
Do=input('stator ring outer diameter=') %mm 
tau=Do*pi/p   %pole-pitch of the stator poles at outer diameter (mm) 
Prin=tau*p/2      %stator inner periferry (mm) 
Din=Prin/pi       %inner diameter of the stator (mm) 
hs=(Do-Din)/2     %stator pole hight (mm) 
W=sqrt(DW2/Din);  %stator ring width (mm) 
W=input('width of stator ring W=')%(mm) 
S=1.06*pi^2*p/2*n/60*Bav*J*Kn*KE*Din*W^2*10^-9  %power at actual stator 

dimensions (W) 
WM=Km*W/2         %magnet axial width (mm) 
dsFe=Bav/BsFe*W/2 %width of the stator core (mm) 
dc=W-2*dsFe       %width of the coil (mm) 
drFe=Bav/BrFe*W/2 %thickness of the rotor core (mm) 
Dor=Do+2*g*10^3+2*hM+2*drFe %outer rotor diameter (mm) 

  
%calculation of the winding parameters 
E=Vp/KE            %electromotive force (V) 
N=E/(0.058*n*p/2*Din*W*Bav*Kn)*10^6  %number of coil turns 
Np=input('The number of turns of coil N=') 
Ep=0.058*n*p/2*Din*W*Bav*Np*Kn/10^6  %phase emf for given turn number (V) 
I=Sout/3/Vp        %phase current (A) 
Dw=2*sqrt(I/pi/Jw) %wire diameter (mm) 
Dw=input('wire diameter Dw=') 
Rwpkm=input('resistance per 1km Rw/m=') 
Ac=pi*(0.001*Dw/2)^2*Np/Kcu*10^6  %coil cros-section area (mm^2) 
hc=Ac/dc            %hight of the coil (mm) 
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hc=input('height of the coil hc=') %(mm) 
hFe=bFe*1000+hc+dsFe %actual hight of the stator pole (mm) 
Lc=pi*(Do-2*bFe*1000-hc)%average length of the coil (mm) 
Rp=Rwpkm*0.001*Lc*Np %coil resistance (Ohms) 
Sin=3*Ep*I           %input power (VA) 

  
%summary of the motor parameters 
%stator dimensions 
Din_Do_p_tau_W_hFe_dsFe_bFe=[Din Do p tau W hFe dsFe bFe] 

  
%Rotor dimensions 
Dor_hM_WM_drFe_g=[Dor hM WM drFe g] 

  
%Winding parameters 
Np_Dw_hc_Kcu_Jw_Rp=[Np Dw hc Kcu Jw Rp] 

  
%Electromechanical parameters 
Sout_Sin_Vp_I_Ep_n_f=[Sout Sin Vp I Ep n f] 
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APPENDIX F: M-FILE FOR CALCULATION OF VOLTAGE HARMONIC CONTENT  

 
X = Time; 
Y = Voltage;  

N = length(X*0.001); 
delta_t = mean(diff(X*0.001)); 
f_max = 1/delta_t;             % max frequency (Sampling theory) 

  
% frequency scale 
f_scale = linspace(0,f_max/2,floor(N/2)); 
spectrum=fftn(Y)/(N) 

  
subplot (2,1,1) 
plot(X,Y) 
xlabel('Time, ms') 
ylabel('Voltage RMS, V') 

  subplot (2,1,2) 
bar(f_scale,abs(spectrum(1:length(f_scale)))); 
xlabel('Harmonics') 
ylabel('Voltage RMS, V') 
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APPENDIX G: M-FILE FOR PLOTTING GENERATOR CHARACTERISTICS IN 

DYNAMIC CONDITION 

load torque Tem; load speed n; load in TwP;load voltage VE;load output Pout;load 

input Pin;load Pelectrom Pem; load efficiency Eff  
t=Tem(1,:);n=n(2,:);Pem=Pem(2,:);Pin=Pin(2,:);Pout=Pout(2,:);Tin=TwP(2,:);Ia=VE(4

,:);Vph=VE(3,:);Ef=VE(2,:);Eff=Eff(2,:);w=TwP(4,:); 

  
CLF 
figure (1) 
plot(t,Pout, t, n, t, Tem*10),xlabel('time [s]'), 
ylabel(' Pout [W], Tem [W], speed [rpm] '),grid 

  
figure (2) 
plot(t, Ef,t,Vph, t, Ia/10),xlabel('time [s]'), 
ylabel(' Ef [V], Vph [V], Iph [A] '),grid 
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APPENDIX H: M-FILE FOR CALCULATING STEADY STATE CHARACTERISTICS 

OF THE MACHINE WITH DOUBLE STATOR DISCUSSED IN CHAPTER 6 

N=132;                            % Number of turns 
p=16;                             % Number of poles 
R=0.047;                          % Radius of the coil (m) 
Nc=1;                             % Number of coils 
Ls=0.0037*2                       % Coil Inductance (H) 
q=0.18;                           % Flux linkage of the inner coil (Wb*turns) 
q1=0.15                           % Flux linkage of the outer coil (Wb*turns) 
Rr=0.101;                         % Resistance of the wire (Ohms) 
RL=7;                             % Load resistance (Ohms) 
Lc=2*pi*R;                        % Average length of the coil (m) 
Ra=Lc*N*Nc*Rr                     % Armature resistance (Ohms) 
n=0:800/100:800;                  % Speed range (rpm) 
Ef=4.44*n.*p/120*(q+q1);          % Induced voltage of the generator with shunts 

(V) 
Xl=2*pi*n.*p/120*Ls;              % Inductive reactance (Ohms) 
Z=sqrt((RL+Ra)^2+Xl.^2)           % Impedance (Ohms) 
Ia=Ef./Z;                         % Output current of the machine with shunts (A) 
Vph=Ia*RL;                        % Terminal voltage of the machine with shunts 

(V) 
Pout=3*RL*Ia.^2                   % Output power of the generator with shunts (W) 

  

  
figure(1) 
plot(n,Pout), xlabel('Speed [rpm]'), grid 
ylabel('Output power [W]') 
figure (2) 
plot (n, Vph), xlabel ('Speed [rpm]'), grid  
ylabel('Terminal voltage [V]') 
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