
- 46 - 

div(ExB) = B.rotE - E.rotB, (14.2) 

we can write (14.1) in the form 

2 2 
BE +B L gE+ S divEs) = 0. (14.3) 
at  8n 4n 

Let us now integrate this equation over an arbitrary volume V containing our elec- 

tromagnetic system and use the Gauss teorem for the last term 

2 2 o (€ + B ExB LA - . =, =0, 4.4 at{ = dv+£JEdV+gc4ncB 0 (14.4) 

where the last integral is spread over the surface S of the volume V. 

Taking into account the second equation (9.14), we can write 
n 

{J.E dv = _Zlqivi.E, (14.5) 
1= 

where n is the nunber of the charges in the system. 

Putting this into (14.4) and taking into account equation (8.7), assuming there 

S = - divh = 0, as this is a rather ad hoc introduced term, we obtain 

2 2 n 3 (E€ + 8B d C o+ — .dS = 0. 14.6 at‘\[, = dv + m izlem t o g(ExB) @S =0 ( ) 

1f we consider the integral on the right side as time (kinetic) energy, then, 

having in mind the energy conservation law (2.15), we have to assume that the cor- 

responding "particles"” move with the velocity c away from the volume V and that in 

a unit of time the energy 

1 =fi£xs (18.7) 

crosses a unit surface placed at right angles to I, which is called (ELECTROMAGNETIC) 

ENERGY FLUX DENSITY. The quantity 

s--lead (14.8) 
4n 

is the density of this energy (at a snap shot) and is called the POYNTING VECTOR. 

It turns out (see Chapter 1V) that E and B in the last term of (14.6) are to be 

considered as the electric and magnetic intensities radiated by the charges of the 

system and thus are to be denoted by Erad and Brad‘ Then E and B in the first term 

of (14.6) are to be considered as the radiation electric and magnetic intensities 

radiated by the charges of the system which still have not left the volume V and 

thus are also to be denoted by Erad and Brad' The middle term in (14.6) is the change 

of the time energy of the system which, according to formulas (14.5) and (8.7), is 

equal to the change of the potential electric energy of the system. Thus, for a given 

short time interval, the change of electric (or time) energy of the system is equal 

to the change of the radiated energy in the volume V (given by the first term in 

(14.6)) plus the energy radiated outside the volume V (given by the third term in 

(14.6)). Thus E and B in formula (14.6) do not represent the potential electric and 
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magnetic intensities, Epot' Bpot’ but only the radiation electric and magnetic in- 

tensities Erad‘ Brad‘ In Chapter IV we shall see that Erad = Brad and Erad’nrad = Q. 

Considering the potential electric and magnetic fields as physical realities, of- 

ficial physics brought into the theory a big mess. I repeat, the potential electric 

and magnetic intensities are mathematical quantities which exist only in our heads. 

They have neither energy density (the energy density near the charges will be infi- 

nitely big and thus incalculable!) nor momentum density. Meanwhile the radiated 

electric and magnetic intensities are physically existing quantities with the ener- 

gy density 

5 = (2 + 8%)/8n (14.9) 

and momentum density I given by formula (14.7). 

Concluding this chapter, let me say that the Maxwell-Lorentz equations are not 

some "physical” equations invented by somebody. They are the most trivial mathema- 

tical deductions from the Newton-Lorentz equation (which in its official form can 

be found in Maxwell's "Treatise" and thus it is unjustified to call it "Lorentz 

equation") and the equations (9.16) connecting densities and potentials, which, 

from their part, are the most obvious results of the definition equations (8.1) for 

the potentials and the definition equations (9.14) for the densities. 

But neither the Newton-Lorentz equation is some "physical® equation, as it is a 

trivial mathematical result from the Coulomb law (axiom V), the Neumann law (axiom 

VIII), the form of the time energy of mass m moving with velocity v (axiom VI) and 

the energy conservation law (axiom IX). I have, however, to emphasize that I spent 

J years in Sofia of intensive mental work some 20 years ago to arrive at the deduc- 

tion of the Lorentz equation from the mentioned four axioms, and my last 10 years 

in Graz to understand that at this deduction I had to take dA/dt in the form(7.9) 

and not without the term vdivA, as I did in Sofia, and to write it thus in the New- 

ton-Lorentz form. Nicolaev's experiments, however, impelled me to introduce some 

changes in this term (see Sect. 24). 

Thus, according to me, in classical physics there are only four discoveries: 

1) Coulomb's law in electromagnetism and Newton's law in gravitation. 

2) Neumann's law (as a matter if fact, the coronation of Neumann's law as a fun- 

damental physical axiom was done by me). 

3) The form of the time energy of a particle. 

4) The energy conservation law. 

As my own physical discovery, I consider the revelation of the Marinov-aether 

character of light propagation. In my CLASSICAL PHYSICS(S) the Marinov-aether cha- 

racter of light propagation is introduced in the theory as an axiom (the tenth axiom} 

I did not follow this way in the present book, as the volume of Sect. 2 had to be 

substantially increased, meanwhile I wish to explain with this book what electromag- 

netism is in the most laconic way. 

As another physical discovery is to be considered the introduction, rather ad he.
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of the scalar magnetic intensity in its Whittaker's and Nicolaev's forms (see Sect. 

24), noting, however, that the form of the scalar magnetic intensity is still not 

established definitely. The "discovery" of the motional-transformer induction and 

the "invention" of the perpetua mobilia MAMIN COLIU, VENETIN COLIU and SIBEREAN CO- 

LIU (see Chapter VI) are simple logical results to which all logically thinking 

children have to come alone when analyzing the Newton-lLorentz equation. Thus, accor- 

ding to me, discovery is the creation of an axiomatical assertion (which is right!), 

The mathematical deductions from the axiomatical assertions cannot be discoveries. 

1 do not consider the coronation of the potentials as the primary physical quan- 

tities and the decoronation of the intensities as an achievemnt of some value, as 

those are obvious things and eveéy logically thinking child has to come alone to 

these conclusions. Indeed, if A is given, then every ordinary child is able the cal- 

culate quickly Etr' B and S, but if E... B and S are given neither the most extra- 

ordinary professor is able to calculate A. 

Neither the establishment of space and time as absolute categories nor the rejec- 

tion of the principles of relativity and equivalence can be considered as achieve- 

ments of some value, as every normally thinking child accepts these assertions as 

true and not the oposite. 
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NI, LOW-ACCELERATION ELECTROMAGNET] sy 

15. INTRODUCTION 

Further 1 shall no more pay attention to gravimagretism and only some “neuralgic” 

aspects of electromagnetism will be treated. 

In Chapter 111 the acceleration of the electric charges of the system considered 

will be supposed low and thus their radiation will be neglected (it will be shown 

in Chapter IV that the energy radiated by the electric charges is proportional to 

their accelerations). 

The electromagetic equations obtained in Chapter II are for a system of single 

particles. But the electromagnetic systems with which we experiment only rarely con- 

sist of single particles. The predominant part of the material systems are MEDIA 

which are built in a very complicated manner of single charged and uncharged parti- 

cles. We shall disregard the way in which the media are built and we shall accept 

very simple models elaborated by humanity after centuries of experimental work and 

observations. It turns out that by accepting these genuine models of the media, 

we can calculate a large quantity of the electromagnetic phenomena by the help of 

the simple equations deduced in Chapter II for a system of single particles. This 

simple approach to the problems of electromagnetism is called PHENOMENOLOGICAL AP- 

PROACH. 

1 shall work in this book with the most simple media: current conducting wires, 

condensers filled by air (vacuum) or by dielectrics and coils filled by air or by 

magnetics, appealing to the most general and elementary knowledges of the reader, 

elaborated in the secondary schools or by reading some popular booklets. 

16. RESISTANCE 

The ELECTRIC CURRENT I which flows in a metal wire (which will be called also 

CONDUCTOR) is the quantity of electric charge dq which crosses its cross-section for 

the time dt 

1 = dq/dt. (16.1) 

The electric tension dU along a length dr of the conductor will be given by for- 

mula (13.7), where E will be the acting electric intensity which I call also DRI- 

VING ELECTRIC INTENSITY. Consequently the tension U along the whole or a part of 

the conductor will be called DRIVING ELECTRIC TENSION. 

It was experimentally established (by Ohm in 1826) that the current flowing in a 

conductor is proportional to the electric tension between its end points 

1 = GU, (16.2) 

where the coefficient G which depends on the material substance of the conductor and 

on its geometry is called CONDUCTANCE. Equation (16.2) is called OHM'S LAW.
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The conductance of a wire with a unit length and unit cross-section is called 

CONDUCTIVITY and is denoted by y. Thus the conductance of a wire with length L and 

cross-section S will be 
G = yS/L. (16.3) 

RESISTANCE R, which is much more used in practice, is the quantity inverse to 

conductance 
R=1/G = L/¥S = plL/S, (16.4) 

where p is called RESISTIVITY and this is the resistance of wire with unit length 

and unit cross-section. Thus we can write 

I = U/R. (16.5) 

If the resistance of a wire is zero, it is called SUPER-CONDUCTOR. 

Let us suppose that dq charges have been transferred along a conductor for & tim 

dt, the tension between whose end points is U = A, where Ab is the difference be- 

tween the electric potentials at the end points. According to the first formula 

(8.2), in which we have to write Ue‘ dqg and A% instead of U, q and ¢, the electric 

energy of the system will change with 

dU, = dqa® = dqU = IUdt, (16.6) 

where equation (16.1) was taken into account. 

The change of the energy in a time unit 

P = du,/dt (16.7) 

is called POWER, and from (16.6) and (16.7) we obtain 

P = 1U=RIZ = UR. (16.8) 

This power is liberated as heat in the conductor and is lost by the source sup- 

plying the driving tension. HEAT is a physical phenomenon outside the domain of 

electromagnetism and for this reason Ohm's law cannot be obtained from my axioma- 

tics. In “"pure" electromagnetism, which is to be thoroughly explained by logical 

deductions from the axiomatics, the conductors must be super-conductors. 

Until the present time it is not clear how electric current propagates along me- 

tal wires. The phenomenological model proposed by me(s) is the following: 

The so-called valence electrons, which are the current conducting electrons, are 

loosely connected with the ions of the metal lattice, jumping continuously from one 

atom to another and forming a kind of "electron gas" throughout the solid ions' 

lattice. If there is no electric tension applied to the wire, the motion of the va- 

lence electrons is chaotic and their average velocity is zero. When an electric 

tension is applied to the wire (imagine, for simplicity, that an electric pulse is 

applied to the left end of the wire by supplying a surplus of electrons), the chao- 

tically moving electrons from the left end, where the concentration exeeds the con- 

centration of the valence electrons, begin to move with a preferred average velo- 

city to the right, where the electron concentration is less. The average "DRIFT 
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VELOCITY" of the electrons, Vdr? is of the order of mm/sec. This velocity can ue 

easily calculated if assuming that all valence electrons in the wire are curren 

conducting electrons. However the velocity, Ven® with which the "electrons’ concen- 

tration" propagates through the wire, and which I call the ENERGY VELOCITY, is of 

the order of c, as can be established by measuring the velocity with which the cur- 

rent pulse propagates. Thus, after a second the exceeding electrons which were Sue- 

plied to the left wire's end will be transferred to 1 mm, but the electrons' concern- 

tration will be exceeding at a distance of 300,000 km. If the wire is not closed, 

the electrons' concentration will be reflected from the right end and returning back 

will be reflected from the left end, and so on, until the surplus electrons will be 

distributed uniformly troughout the wire and its surface will become equipotential. 

As the electrons are absolutely identical and indistingushable one from another, 

we must conclude that in a second the exceeding electrons were transferred at a dis- 

tance of 300,000 km. (Indeed, if 100 electrons in file move on 1 cm each in a second 

or the first electron moves on 100 cm, while the other 99 remain at rest, the phy- 

sical result is the same.) 

If there is a consumer at the right end of the wire and the supply of surplus 

electrons at the left end is continuous, the electric energy from the supplier to 

the consumer will proceed along the wire with the velocity Ven = ¢ 

It must be clear that the velocity of the single electrons is neither the drift 

velocity, Vgpr Nor the energy velocity, Ven- Every electron moves chaotically. It is 

possible that some of the supplied surplus electrons may cover the whole wire with 

a velocity ¢ and be always in the "electrons' surplus concentration". The probabili- 

ty for such a case is vdr/ven' Even in a wire without electric tension there is a 

possibility that some electron will cross it from one end to the other with a velo- 

city c, however the probability for such a case is zero. Although the electric ener- 

gy transferred along a wire is something material and can be measured in energy 

units transferred in a time unit along a length unit, official physics speaks about 

a foggy "propagation of interactoon", being unable to explain what 3 physical quan- 

tity "interaction" is and with which measuring instruments and in which measuring 

units is to be measured. For certain official physicists the "interaction" propagate: 

through the metal, for other it surrounds the conductor similarly to the aura 

which surrounds the human body according to the assertions of the Indian yogas. 

My friends Milnes(m) and Pappas(n) have done experiments for measuring the ve- 

locity of propagation of current pulses along copper wires and have established 

that it is much higher than c, at least 10 or even 100 times higher than c. 

It turns out that only the directed motion of the electrons liberates heat but 

the chaotic motion does not. This result nukés the hypothesis about the "electron 

gas" shaky. Thus after so many years of experimentation with currents in metal wires 

one can make the conclusion: we still do not know the mechanism of propagation of 

the current.
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17. CAPACITANCE 

It is obvious that the potential difference (tension) between a charged conduc- 

tor and other uncharged conductors in its neighbourhood (the latter usually are 

connected to earth) will be proportinal to the electric charge q on the conductor 

U= (1/C)a, (17.1) 

where the coefficient 1/C depends on the geometry of the whole systemand C is cal- 

led CAPACITANCE. The number C shows the quantity of electric charge with which the 

conductor is to be charged to increase its potential with unity respectively to 

the uncharged conductors. A material system which has capacitance is called CONDEN- 

SER (one can use also the word CAPACITOR). 

Let us have a condenser consisting of two parallel plates of surface S, the dis- 

tance between which is d. One can use equation (13.8) and the second equation (13.2) 

to find its capacitance. The volume of integration V will be chosen so that it con- 

tains one of the plates, the charge density on which is Q. Designating the surface 

of the volume V by S', we shall have 

¢ E.dS = 4 [QdV = 4nq, (17.2) 
S' v 

where q is the whole charge on the plate (the charge on the other plate is -q if 

the latter is not earthed). If d is small with respect to ¥S, we can assume that 

the electric intensity is different from zero only between the plates, being there 

constant and perpendicular to the plates. Thus we shall have 

ES = 4nq. (17.3) 

As E = U/d, we obtain from here 

q = (S/4nd)u. (17.4) 

Comparing this with (17.1), we obtain for the capacitance of the parallel plate 

condenser 
C = S/4nd. (17.5) 

We see from equation (17.4), if denoting the surface charge density by L = q/S, 

that the electric intensity between two nearly placed parallel plates charged ho- 

mogeneously with surface charge density I is 

E = 4nL. (17.6) 

Let us find now the capacitance of a cylindrical condenser with coaxial plates 

with radii Ri and Re of the internal and external plates and length L, supposing 

Re - Ri << L. 

We use again formula (13.8) and choose the volume of integration V to contain 

only the internal cylindrical plate. Assuming again that E is different from zero 

only in the space between the plates where it is constant and perpendicular to the 

condenser's axis, we shall obtain from (13.8), if choosing the integration surface
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crossing the space between the plates to be cylindrical with a radiuws r, 

E(2nrL) = 4nq. (17.7, 

Thus the tension between the plates will be 

Re Re 
U= [ E.dr = {(2q/L)f dr/r = 2qIn(R /R )/L. (17.8; 

R~ R‘ e 1 

1 

Comparing this with (17.1), we obtain for the capacitance of the cylindrical conden- 

ser 
C= L/Z‘In(Re/Ri). (17.9) 

Denoting the surface charge density on the internal cylindrical plate by L = 

q/2tR;L, we see from equation (17.7) that the electric intensity between two nearly 

placed coaxial cylindrical plates charged homogeneously with surface charge density 

L, at a distance r from the cylindrical axis, is 

E = 4mIR /T (17.10) 

From here, at r = R]., we obtain formula (17.6) 

18. INDUCTANCE 

18. 1. INDUCTANCE OF A LOOP. 

Let us have a circuit in which current I flows. This current will generate the 

magnetic potential A(r) at a reference point with radius vector r. Let us take the 

line integral of A along a certain closed loop L. According to Stokes theorem, ta- 

king into account the second formula (8.6), we shall have 

$ A.dr = [rotA.dS = [ B.dS = ¢, (18.1) 
L S S 

where S is an arbitrary surface spanned on the closed line L and ¢ is called MAGNE- 

TIC FLUX (electric potential and magnetic flux are designated by the same symbol 

and be attentive to not confound them!) crossing the surface S. 

If denoting by Ao the magnetic potential generated by a unit current flowing in 

the circuit, and if taking the line L to be the circuit itself, we shall have 

¢ =1 éAo.dr = LI, (18.2) 
L 

where 

L=¢A .dr = [B .dS 18.3 fo I8 (18.3) 

is called INDUCTANCE of the circuit and Bo is the magnetic intensity generated by a 

unit current flowing in the circuit on the arbitrary surface S spanned on the cir- 

cuit. Thus L is the magnetic flux generated by a unit current flowing in the cir- 

cuit through any surface S spanned on the circuit.
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18.2. INDUCTANCE OF A CIRCULAR LOOP. 

Let us calculate the inductance of the most simple circular circuit (fig.2). 

We take the reference framwith origin at the center of the loop and we shall 

calculate first the magnetic potential generated by an arbitrary current element at 

an internal (in the loop) and at an external (outside the loop) reference point, 

both lying on the positive x-axis. Let us denote the distance from the frame's ori- 

gin to both reference points by Pint and Pext’ and from the loop's element by Tint 

and Text: The radius of the circular loop is denoted by R and the angle between the 

x-axis and the radius vector to the loop's element (which, for definiteness, let us 

consider in the first quadrant) by ¢. The flow of the current will be taken in the 

positive direction (i.e., counter-clockwise). 

If dq is the quantity of electric charge which for a time dt is transferred 

through the cross-section of the wire, we can write dqv = dqdr/dt = Idr, where [ = 

dg/dt is the flowing current, dr is the line element of the loop taken along the 

current, and the expression Idr is called CURRENT ELEMENT. Resolving the vector of 

the current element into a horizontal and vertical components, we see that the ac- 

tions of the horizontal components of two symmetric current elements in the 

first and fourth quadrants will annihilate one another, so that only the action of 

the vertical component will remain. Thus we concude that the magnetic potential at 

the internal and external reference points originated by both symmetric current ele- 

ments in the first and fourth quadrants will be parallel to the y-axis. For the ab- 

solute value, according to the definition formula for A (8.1), we obtain 

_ ol drcose _ 21Rcosd dy 
dA =2 = . 

cr c(p® - 2oRcos + RE)1/2 
(18.4) 

where by r and p either the internal or external distances are denoted, and we put 

dr = Rds. 

To obtain the magnetic potential originated by the current in the whole loop, we 

have to integrate formula (18.4) for ¢ changing from 0 to n, thus obtaining 

nl p 

1 ¢ (R2 - 02)1/2 (for o < R), 
= _ 2IR cos¢ do _ 

A et (2 - 2pRcosg + R)VZ a1 R2 o (p° - 2pRcos¢ + n 
¢ 2 R2)1/2 (for p > R). (18.5) 

The value of the elliptical integral in (18.5) can be found in a standard table 

of integrals. This formula shows that the magnetic potential increases rapidly from 

0 at the center of the loop to infinity at the loop, and then it decreases slowly 

to 0 at infinity. 

As the magnetic potential of a circular loop has rotational symmetry, the magne- 

tic intensity produced by it can be calculated immediately, using the expression for 

rotation in cylindrical coordinates, taking A = (Ap. A¢. Az) = (0, A, 0), where for
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Fig. 2. Circular loop in which current flows. 

A the expressions (18.5) are to be taken, 

nl  2R% - p? 4 
T . gz (fre< R 

1 3(pA) » (R®-p°) 
B - rotA = 1 3 - (18.6) 

P ap _nl R2 
Z (forp> R). € (L - R 

This formula shows that the magnetic intensity increases from (2nl/cR)Z at the 

center of the loop to »Z at the loop inside and then decreases from - =z at the 

loop outside to 0 at infinity. 

Let us calculate the inductance of the circular circuit according to the second 

formula (18.3) for p < R 

R ,02 _ 2 2 2 2 R 
2R¢ - p 2n 2n R L=fB .ds =2 [ 5 "0 __2n5dp = <R+ ==, (18.7) 

go € o (R - p2)372 3 < (- )2y 

We see that by substituting the 1imit "R" in the solution on the right side, we 

obtain infinity. Thus the inductance of a circular infinitely thin loop is infini- 

tely large. 

If the radius of the circular wire is r, we have to divide the integral (18.7) 

into two integrals: one in the limits from 0 to R - r, in which the magnetic inten- 

sity in the circle of radius R -r is generated by the whole current (in our case 

I'=1), and one in the limits from R -r to R, in which the current is a function of 

the integration variable. In our case we have to take I = (R-p)/r, if the current
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is distributed homogenecusly across the wire's cross-section. As, however, one needs 

to know the inductance for alternating currents, we have to take into account the 

SKIN EFFECT, according to which there will be more current near the cylindrical sur- 

face of the conductor and less along its axis, so that the calculation becomes more 

complicated and the inductance of a loop becomes dependent on the current frequency. 

Thus, for homogeneously distributed current, the integral (18.7) must be separa- 

ted into the following two integrals 

L="2 R-r 2 R 2 2 
[ (Rp)(2R” -0 ) 42 (18.8) < Rer r(RE -p2)32 

2_2 

The calculation of the second integral is pretty complicated but in a good appro- 

ximation (good enough for any practical use) we can solve it as follows: Let us mul- 

tiply and divide the second integrand by R+p and let us put p = R everywhere in the 

second integrand besides the expressions R2 -p2. 

The values of the two integrals in (18.8) will be 

2 2,3/2 L= 21%(R - r)2 + "RE@R-r) - an?R2__ _ 2/z%RY (18.9) 
c2rr-r)V2 " carR-2)V2  car)V/2 oF 

where the result on the right is obtained by neglecting r with respect to R. 

Thus the first integral in (18.8) gives only the half of the right value. 

Scott(lz) also tried to find the inductance of a circular wire and after horrible 

calculations, where the physical substance of the problem was completely lost, obtai- 

ned the following result 

Lscott = (4n/c)RUIN(8R/r) - 7/4}. (18.10) 

Scott's formula is definitely wrong, as the truncated first integral (18.8), 

which 1 shall denote by Ly, and which gives a value definitely lower than the 

true inductance Lypye. is always larger than Lgcoty- Here are the relations 

Lerunc/Lscott for R/r = 10; 100; 1000: L4y /Lgcoet= 1-115 2.215 4.84. The rela- 

tions of the true enough inductance L given by the value on the right of (18.9) to 

Scott's value for the same ratios R/r are: L/Lgcoty = 2.743 4.515 9.71. 

There are also two aesthetical reasons showing that Scott's formula is wrong: 

1) His theretical demonstration is too complicated and MARINOV'S RAZOR says: Ogii 

teonda complicata ¢ sbagliata. 2) The number 7/4 indicates that something is rot- 

ten in the formula: the Divinity cannot put this number in a formula describing 

such a symmetric effect. 

King(l3) gives in Handbuch den Physik, the most authoritative source of physics 

knowledge, the following formula for the inductance of a circular loop 

Ling = (an/c)R(Rer)} 20 (2/Kk -K)K(m/2,K) - (2/K)E(n/2.K)), (18.11) 
where 

- k.2)1/2. k = (1 k' = r/(2R +r), (18.12) 
and
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n/2 n/2 
K(n/2,k) = | do . E(/2,k) = [ (1- Kk%sinZe)2  (18.13) 

o (1- kzsin2¢)1/2 0 

are the complete elliptic integrals of first and second kinds which are tabulated 

& functions of k. 

When R/r is sufficiently large, k' is small and the elliptic integrals may be 

expounded in powers of K'. For the leading terms King has obtained 

L = (4n/c)R{In(8R/r) - 2}. (18.14) 
king 

King's formula is very near to Scott's formula, and this is an indication that 

both authors have calculated well. Why then are their formulas wrong? - According 

to me, the explanation for the substantial difference between my formula (18.9), on 

one side, and formulas (18.10) and (18.14) of Scott and King, on the other side, is 

that they have done the calculations proceeding from the first formula (18.3) (as a 

mtter of fact, from (18.16)), while I did the calculation proceeding from the se- 

cond formula (18.3). My way is mathematically simple and straighforward, the ways 

of Scott and King are horribly complicated, as they lead to elliptical integrals. 

Nevertheless, as the left and right formulas (18.3) are mathematically indenti- 

cal, one has to obtain identical results. I leave to the mathematicians the honour 

to find why the calculations of Scott and King have led to a wrong result. 

18.3. NEUMANN'S FORMULA. 

Returning to formula (18.3) and taking into account that 

A = ¢ldr/cr, A = ddr/cr, (18.15) 
L ° L 

we can write the left side of formula (18.3) in the form 

L = ¢ gdr.dr'/cr. (18.16) 
LL 

Let us have now two circuits Ll and LZ' Let us take the line integral of the mag- 

netic potential Al generated by the current 1; in the first circuit along the con- 

tour Ly of the second circuit. Using again Stokes theorem, as in formula (18.1), we 

shall have 
¢ I\l.dr2 = £ r'otAl.cS2 = é 812‘d52 = 012, (18.17) 

L2 2 2 
where Sp is an arbitrary surface spanned on the closed line L, and 7 is the mag- 

netic flux generated by the current in the loop Lj which crosses the surface of the 

loop L. If A} is generated by a unit current and if taking into account formula 

(18.15), we can write for the MUTUAL INDUCTANCE of L, due to the unit current in L, 

Lyp = f A, .dr, = g-{ dry.dry/crp,. (18.18) 
2 1+2 

This is called the FORMULA OF NEUMANN and obviously L1z = Loy 

Now the inductance (18.16) can be called SELF-INDUCTANCE and denoted by Lp;.
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If we have N circular loops with the same radius overlapping one another and if 

the common radius of their filaments is much less than the loop's radius, we can 

make the following conclusion: The self-inductance of every loop will be L (see 

(18.9)) and the mutual inductance of every loop caused by the other N-1 loops will 

be (N-1)L. Thus the inductance of all N loops will be N2L. 

If the distances between the loops are considerable and their positions one with 

respect to another arbitrary, every single mutual inductance will be less than L, 

and thus the inductance of the whole system will be less than NZL. 

Let me note that if the currents I; and I are flowing, respectively, in the 

coils Ly and Lz, the mutual inductance of whom is Ljp, then the mutual magnetic 

energy of the currents in these two coils will be (see (2.14) and (18.18)) 

uz < - § {quvl.qzvz/czrlz - f tzlldrl.Izdrz/czrlz e - 1Ly, 
1 1 (18.19) 

where the relations I dry = qqvy, Ipdr, = qpvy have been taken into account. 

As a matter of fact, I called equation (2.14) Neumann's law when proceeding from 

formula (18.19). 

For the magnetic energy of the current elements in a single coil with self-induc- 

tance L we shall have 

W= - (1/2)L12 (18.20) 

and it is a negative quantity, meanwhile in any official text-book on electromagne- 

tism this energy is taken wrongly as a positive quantity. 

It is easy to see that on the right side of (18.20) the coefficient 1/2 is to be 

taken, as at the integration in (18.16) we take once the product of dr'i with drj and 

once the product of dr with dri'. so that we shall obtain twice their magnetic ener- 

gy. Of course, we can write (18.20) without the factor 1/2 but then this factor is 

to be put in formula (18.16). 

1 have, however, to emphasize that the calculation of the self-inductance accor- 

ding to formula (18.16) inevitably leads to improper integrals, as the distance rii 

between the element dr, at the one integration along L and the element dr].' = dr; at 

the other integration along the same contour L is zero. Perhaps here is to be sear- 

ched for the wrong calculations of Scott and King. 

18.4. INDUCTANCE OF AN INFINITELY LONG SOLENOID. 

Let us consider N circular loops of radius R with a common axis and having the 

same distance one from another, in which current 1 flows. We can assume, for mathe- 

matical rigorosity, that the N circular loops are independent and any has its own 

source of electric tension, but, of course, we shall have in mind that all loops are 

connected, building thus a COIL, and that there is only one source of electric ten- 

sion. Such a cylindrical coil is called also SOLENOID. If the length of the soleno- 

id is 1, there will be n = N/1 TURNS (of WINDINGS) on a unit of its length. When 1
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tends to infinity, the solenoid is called INFINITE. 

The magnetic potential in the plane of any circular loop generated by its own 

current is given by formula (18.5). The magnetic potential generated in a plane 

whose distance from the loop's plane is z will be 

mn 
A = 21IR [ cos¢ do (18.21) 

¢ o (p2 - 2pRcos¢ + RZ + 12)1/2. 

The magnetic potential generated by all windings of an infinite solenoid at a 

point with cylindrical coordinates p, ¢, z will be 

. _ 2R 
A= LA = 

o
—
 
8
 

m 

ndz [ — cos® dé —y  (18.22) 
o (p¢ - 2pRcos¢ + R® + 2z )1/ 

This integral can be evaluated by dividing it in two parts, from 0 to n/2 and from 

7/2 to m, writing in the second integral = - ¢ for ¢ and interchanging its limits. 

Denoting then 2, = ;:a2 - 2pRcos¢ + R2, and 2, = pz + 2pRcos¢ + Rz, we shall have 

2nIR %, /2 1 1 A==—— [dz [ cos¢ dod{ - }. 18.23 
¢ £ £ (a% + 22)1/2 (ag + zz) 172 ( ) 

Interchanging now the order of integration, we can easily take the integral on 2 

/2 ay z + (z2 + a%)l/2 ® SR n/2 
2nIR 

A=222 cos¢ doIn{ = cos¢ d¢In(a,/a,) = 
c({ alz+(zz+a:22)1/2 o ¢ £ 271 

n/2 2 
20IR™Y" cos dpTn(* 2oReose + ¥ (.2 

0 08 - 2pRcose + R 

let us denote a = ZpR/(p2 +R2) and use integration by parts, the one part being 

cospdp and the other the logarithm. The integrated part vanishes and the integral, 

except for the factor 2nIR/c, becomes 
w2 .2 n/2 

o 1- azcosch— a 

3s the reader can readily verify by differentiation. 

The expression arctan{tan¢/(1 -az)l/z} approaches n/2 as ¢ + n/2. Using 

(1-a)2 = (% - 20%R% + o) V2)(0% « R2T = |of - R|/(ed + RD),  (18.26) 
we obtain 

po iRl s 1e? - ). (18.27) 
c PR 2 DZ + RS 

Thus 
2anlp/c, 1 3(pA 4nnl/c, (for p < R), 

A = B = 13(eA) | (18.28) 
2an1R%/cp, P 3 0, (for p > R). 

The inductance of one loop of this infinite solenoid, according to both formulas 

(18.3), will have the value
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2 
L = 4n nRZ/c = 4nnS/c = 4nNS/cl, (18.29) 

where S = nR2 is the cross-section of the solencid. 

The_ inductance of all N = nl loops of the solenoid will be 

L = 422n21R%/¢ = 4mn?1s/c = 4nNES/c). (18.30) 

Thic formula remains valid for a final solenoid if 1 is big enough with respect 

to R. Otherwise the inductance of the solenoid will be less than (18.30). 

19. RESISTORS, CAPACITORS AND INDUCTORS 

Every conductor has a certain resistance, capacitance and inductance. Conductors 

for which only one of these qualities is predominant are called, respectively, RE- 

SISTORS, CAPACITORS (condensers) and INDUCTORS. An IDEAL RESISTOR is this one whose 

capacitance and inductance are (or can be accepted) zeros. An IDEAL CAPACITOR is 

this one whose resistance and inductance are zeros. An IDEAL INDUCTOR is this one 

whose resistance and capacitance are zeros. 

In Sect. 16 the energetic aspects of the resistors have been already considered. 

Let us now consider the energetic aspects of capacitors and inductors. 

To charge a condenser having capacitance C with total charge q,, we have to spent 

the following energy (see the first formula (8.2) in which we have to exchange the 

potential difference A¢ by the tension U) 

B % 

U, = [ Uda = | (a/C)dq = @2 
(o] (o] 

. c/2c = cuir2, (19.1) 

where U and q are the variable tension and electric charge of the condenser during 

the charging and U0 is the tension of the charged condenser. This energy will be in- 

vested as MECHANICAL ENERGY (“"mechanical energy" is another name of kinetic energy) 

because always when we add a new portion of charge dq the repulsion from the side 

of the charges on the condenser q becomes greater and gretaer. The electric energy 

Ue stored in the condenser can then be liberated when discharging it. 

Usually a condenser is charged by a SOURCE OF ELECTRIC TENSION. The sources of 

electric tension can be chemical (a CELL, called also a BATTERY), thermal (thermo- 

couple), mechanical (friction of two solid bodies), piezoelectric (appearing at an 

increased pressure on a solid body), induced (see Sect. 21). Every source of electric 

tension has its own resistance, called internal resistance and denoted by Ri' If 

Ri = 0, the source is called IDEAL. 

The tension produced by a source of electric tension is called usually DRIVING 

(ELECTRIC) TENSION and is denoted by Udr' For Udr official physics uses the very 

bad term ELECTROMOTIVE FORCE. Also the very bad term VOLTAGE is used for electric 

tension, 

A charged condenser is also a source of electric tension. If we connect its
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plates by a conductor with zero resistance, it will discharge momentarily with an 

infinitely large current. 

Let now discharge a condenser with capacitance C through a resistor with res:;- 

tance R. The sum of the tensions on the condenser and on the resistor must be zero 

and thus we can write 

RI +q/C =0 or Rdq/dt = - q/C, 119.2: 

where q is the charge on the condenser at the moment t. The differential equation 

(19.2) can be solved directly and its integral is 

? dq/q = - (1/RC) }dt. (19.3; 
% 0 

Taking the integral, we obtain 

In(afq ) = - t/RC  or q= qoe't/RC. (19.4) 

and we have further 

1= (ay/Rc)e /R0 = (u /e t/RC g o RE gy VRC (g5 

The value RC is now seen to be the time it takes the charge, current and poten- 

tial to drop to 1/e = 0.368 of its initial value and is called the TIME CONSTANT of 

the circuit containing the capacitance C and the resistance R. 

Now if we charge up a condenser with a cell of driving tension Udr and wires of 

total resistance R (including the eventual internal resistance Ri of the cell), the 

driving tension must be equal to the sum of the tensions on the resistor and on the 

condenser 

Udr = Rl + q/C or CUdr = RCdq/dt + q. (19.6) 

To solve this differential equation in the form of the indefinite integral as 

above, let us define the charge Q = cudr - q as the difference between the final 

charge CUy, on the condenser and its value g at any time t. Then q = ClUy, - Q and 

dq/dt = - dQ/dt, so that equation (19.6) reads 

CUyr = - RCAQ/dt + CUy - 0, (19.7) 

or 

dQ/Q = - (1/RC)dt. (19.8) 

Thus we obtain as above 

0 = g, FC, (19.9) 
and as for q = 0 there is Q, = ClUgr, we have 

-t/RC Cudr -q= cudre s (19.10) 

which rearranges to 
-t/R a = g1 - e R, (19.11) 

from which we derive 
-t/RC - -t/R ; [ =y e /%, U= (- VR gy 

Let us consider now an ideal inductor with inductance L.
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If the current in the inductor changes, an electric tension will appear in the 

inductor directed oppositely to the driving tension producing the current. The value 

of this electric tension can be found proceeding from the Newton-Lorentz equation 

(8.5). Putting in this equation ¢= 0, v = 0, as the inductor is not charged elec- 

trically and is at rest, we shall find for the global electric intensity which in 

this case 1 shall call INDUCED ELECTRIC INTENSITY 

Eing = - dA/cat, (19.13) 

where A is the magnetic potential along the inductor. 

For the INDUCED ELECTRIC TENSION which will appear along the whole length of the 

inductor L (do not confound the length of the inductor with its inductance) we shall 

have (see (18.2)) 

Uing = fiEind.dr = - (3/cat)A.dr = - (3/cat)[B.dS = - ad/cat = - Lal/cat, (19.14) 
L L 5 

where B is the magnetic intensity through the surface S spanned over the contour L 

of the inductor (or the sum of the surfaces spanned on its single windings), ¢ is 

the common magnetic flux and I is the current flowing in the inductor. Equation 

(19.14) is called FARADAY'S LAW, although it is the most trivial result from the 

Newton-Lorentz equation. 

Equation (19.14) shows that only when the magnetic potential along the inductor's 

wires changes in time, an induced electric intensity and thus also induced electric 

tension do appear. And the magnetic potential changes in time only when the current 

changes in time. 

I repeat here the statement presented in many of my articles: Electromagnetism 

can (and has to) be explained operating only with the potentials. One introduces 

the notion "intensities® (and "fluxes") only for mathematical or memonic convenien- 

ces. So, for example, working with the intensity and not with the potentials, I “cal- 

culated" in Sect. 18 the inductance of a circular loop much more easily than it can 

be done if working with the potential. On the other hand, however, the calculation 

with the intensities may lead to wrong results (see Sect. 22), as the intensities 

are derivatives of the potentials and contain less mathematical information. 

Let us now make a circuit of an ideal inductor with inductance L, a resistor of 

resistance R and a cell with driving tension Ug.. The driving tension plus the in- 

duced tension must be equal to the tension on the resistor, called also OHMIC (ELEC- 

TRIC) TENSION, 

Udr + uind = U or Uy = RI + Ldl/cdt. (19.15) 

Let us multiply this equation by the charge dq = Idt which has passed for a time 

dt along the circuit, i.e., from the positive electrode of the source to its nega- 

tive source, and integrate then the equation for the time from O to t 

t t 2 Io 
{Udrldt = £RI dt +£ Lidl/c, (19.16)
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where I = 0 is the current at the initial zero moment and lo = Ugp/R is the current, 

when dI/dt = 0. 

The integral on the left gives the energy lost by the source, the first integral 

on the right gives the energy liberated as heat in the resistor and the second inte- 

gral on the right gives the magnetic energy 

We=- LI§/2c (19.17; 

taken with an opposite sign, as according to equation (2.15) the electromagnetic 

energy of a system is equal to the difference of its electric and magnetic energies. 

The mgnetic energy (19.17) is stored in the inductor which can be then liberated 

when shortcircuiting the driving tension. 

At such a short-circuiting of the external driving tension Ug., the driving ten- 

sion in the circuit will be the induced tension and it must be equal to the ohmic 

tension 

U, = U or - Ldl/cdt = RI. (19.18) 

This is a differential equation of the form of the equation (19.3) and the solu- 

tion, by analogy with the solution (19.4), will be 

1= 16 RYL, (19.19) 

where t = 0 now refers to the time of the short-circuiting of the source. 

Let us find the amount of heat liberated in the resistor. From the equation 

(19.18), after the multiplication by Idt and integration for the time from t = 0 to 

t = =, we obtain ' 
T2 ¢ 2 
JRISdt = - L fIdl/c = Llo/2c. (19.20) 
0 Iy 

which is just the extra amount of energy originally provided by the cell and “pum- 

ped" in the inductor. Now, at the short-circuiting of the external driving tension, 

this energy will transform in heat in the resistor. 

If there is a circuit with a source of driving tension, resistor, capacitor and 

inductor connected in series, Udr and Uind = - Ldl/cdt must be equal to the sum of 

the tensions on the resistor, RI, and on the condenser, q/C, and rearranging we have 

t 
Uge = RI + q/C + Ldl/cdt with q = [ldt. (19.21) 

(o] 

The solution of this differential equation for a harmonic driving tension is gi- 

ven in Sect. 54.2 and I show then that it obviously violates the energy conservation. 

At the end of this section let me give the formulas for the resistance, capaci- 

tance and inductance of two resistors, capacitors and inductors connected: 

In series: R = Rl + Rz, 1/C = l/C1 +V1/C2. L= Ll + L2. (19.22) 

In parallel:1/R = 1/Rl + 1/R2. C-= C1 + Cz. /L = l/LI + l/Lz. (19.23) 

Indeed: 

1) For two resistances in series we have U = U; + Up, i.e., RI = Rl + Rpl, and
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for two resistance in parallel we have I = 1} + I, i.e., U/R = U/R} + U/Rp. 

2) For two condensers in series we have U = Uy + Up, i.e., U/C = U/Cy + U/Cp, as 

the charges on condensers in series are equal, and for two condensers in parallel 

we have q = q; + qp, i.e., CU = C4U + CoU, as the tensions on two condensers in pa- 

rallel are equal. 

3) For two inductors in series we have U = Uy + Up, i.e., -Ldl/dt = - Lidl/dt - 

Lpdl/dt, and for two inductors in parallel we have 1 = Iy + Ip, i.e., U/wl = Ufuwl] + 

U/uwlp, where w is the frequency of the alternating current (see Sect. 54.2). 

20. DIELECTRICS AND MAGNETICS 

20.1. DIELECTRICS. 

Any medium is current conducting but the differences in the conductivities of 

the different media may be very large. The media with high conductivity are called 

CONDUCTORS, with low conductivity INSULATORS (or DIELECTRICS) and with medium con- 

ductivity SEMI-CONDUCTORS. 

If a conductor is placed in an electric field, its side which points along the 

field will become charged positively and the opposite side, pointing against the 

field, negatively. This effect is called ELECTRIC POLARIZATION BY INDUCTION (short- 

1y INDUCTION POLARIZATION) or ELECTROSTATIC INDUCTION. 

If a dielectric is placed in an electric field, it becomes also polarized. We 

call this kind of electrostatic induction DIELECTRIC (or MOLECULAR) POLARIZATION. 

The difference between these two kinds of polarization is that the positive (resp., 

negative) charges provoking the induction polarization can be taken away and the 

conductor will then remain charged as a whole negatively (resp., positively), while 

the “polarization charges” of a dielectric cannot be taken away, and we call them 

BOUND CHARGES. The induction polarization appears because the FREE CHARGES (elec- 

trons) of the conductor increase their concentration at one side of the body and 

decrease it at the opposite side in an external electric field, while the diele¢- 

tric polarization appears because the molecules of the dielectric become polarized, 

i.e., the one end of the molecule becomes positive and the other end negative (the 

molecules of certain media can always be polarized but they arrange themselves along 

a definite direction only in an external electric field. 

The physical essence of the molecular polarization as well as the physical es- 

sence of the conduction of current are not clear enough. 

Further only the dielectric polarization will be considered. 

Let us have a parallel plate condenser between whose plates a dielectric is pla- 

ced. When applying to the condenser a certain external tension U, on the left of 

its plates N positive charges will appear and on the right N negative charges. Af- 

ter the polarization of the dielectric (which appears with a certain very short re- 

tardation), on the left side of the dielectric N - AN negative charges will appear
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and on its right side N - AN positive charages. The negative bound charges on the 

left dielectric’'s surface will attract by induction other positive charges from the 

positive electrode of the source of driving tension and the charge on the left car.- 

denser's plate will increase, causing further increase of the bound charges on the 

left dielectric's surface. This process will go on until an equilibrium will be in- 

stalled (the same appears on the right plate of the condenser). At the equilibrium 

state there will be 4nxN negative charges on the left dielectric's surface and 

N + 4uxN = N(1 + 4nx) positive charges on the left condenser's plate, where ; is 

called ELECTRIC SUSCEPTIBILITY of the dielectric and 

€ =14 4ny (20.1) 

is called PERMITTIVITY of the dielectric (in the system SI one writes ¢ = 1+ ,). 

Now the electric intensity generated by the charges on the condenser's plates, 

called ELECTRIC DISPLACEMENT, will be 

D=¢E = (1+4nx)E =E + 4uP, (20.2) 

where 
P = xE (20.3) 

is called ELECTRIC POLARIZATION of the dielectric and it is 1/4w part of the elec- 

tric intensity generated by the bound electric charges on the right and left surfa- 

ces of the dielectric. 

The tension acting on the condenser U = E.d (d is the distance between the con- 

denser's plates) before putting the dielectric and after putting it is the same, 

thus the electric intensity between the plates also remains the same, E, and it is 

the sum of the electric intensity D produced by the charges on the condensers plates 

and the electric intensity - 4mxE = - 4nP produced by the bound charges on the left 

and right surfaces of the dielectric. Thus the physically right equation is not equa- 

tion (20.2) but the following one 

E=D-4nxE = D - 4nP. (20.4) 

The electric displacement D cannot be measured. One can measure only the electric 

intensity E by making, for example, a narrow cut in the dielectric of the condenser 

and by putting there the measuring instrument. 

20.2 MAGNETICS. 

An inductor along which current flows is called ELECTROMAGNET (or shortly MAGNET). 

A solenoid is the most simple magnet. The centers of the solenoid's end windings are 

called POLES. NORTH POLE is the one from which one sees the current in the windings 

flowing counter-clockwise, and SOUTH POLE is the one from which one sees the current 

flowing clockwise. A small magnet is called also MAGNETIC DIPOLE. 

According to the older concepts, the molecules of the media are magnetic dipoles. 

Usually these dipoles are pointing chaotically in all space directions. When put in 

an external magnetic field B, the magnetic dipoles arrange themselves along the
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field and the medium becomes magnet as @ whole. The molecules may be not magnetic 

dipoles but they can become such only when the medium is put in an external magnetic 

field. This effect is called MAGNETIZATION and magnetizable medium is called MAGNE- 

TIC. 

According to the now-a-day concepts not the whole molecule is a magnetic dipole 

but only the electrons are such magnetic dipoles with a strictly determined dipole 

moment and a strictly defined angular momentum, called SPIN, which is parallel to 

the magnetic dipole moment. When a magnetic is put in an external magnetic field 

those are the magnetic dipole moments of the electrons which arrange themselves 

along the field and so the magnetic becomes a magnet. 

Let us put a magnetic in a long solenoid whose magnetic intensity is B = (4nnl/c)Z 

(see formula (18.28)). The magnetic field produced by the magnetic after its magne- 

tization in the solenoid (which appears with a certain time retardation, especially 

when the magnetic goes out of the solenoid - see the Ewing effect in Sect. 54.5) 

is 
4nM = 4nx.B, (20.5) 

where M is called MAGNETIZATION of the magnetic (it is equal to 1/4n part of the 

magnetic intensity produced by the magnetic) and Xm is called MAGNETIC SUSCEPTIBILI- 

TY. 

The resultant magnetic intensity in the solenoid will be 

Bu =B + 4uM = (1+4nxm)B =B (20.6) 

and 

uw=1#+ 4nxm (20.7) 

is called PERMEABILITY of the magnetic (in the system SI one writes p =1 + xm). 

Thus the resultant magnetic intensity is the sum of the initial magnetic intensi- 

ty B and the magnetic intensity (20.5) produced by the magnetized magnetic, so that 

(20.6) is the physically right equation. 

Usually one denotes the initial magnetic intensity by H and the symbol B is pre- 

served for the final magnetic intensity when the magnetic is put in the electromag- 

net, calling it inthis case MAGNETIC INDUCTION (or MAGNETIC FLUX DENSITY). With these 

notations equation (20.6) is to be written as follows 

B =H + 4nM = pH. (20.8) 

I am definitely against this separation. The magnetic intensity H and the "magne- 

tic induction” B are not two different physical quantities. Whether in the solenoid 

there is a magnetic or another solenoid generating the same additional intensity 

.41M = 4nxn,P. there areabsolutely no differences in the physical effects produced by 

these two systems. For this reason ] shall very often use the word "magnetic inten- 

sity" both for H and B, and often I shall use the symbol B for H and the symbol Bu 

for the "magnetic induction" B, trying to emphasize in this way that between B and 
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H there is no principal physical difference. 

The most tragic thing is that in the measuring system SI H and B are measured in 

different measuring units. For this reason this system must never be used in theore- 

tical considerations when one wishes to understand the physical essence of the ef- 

fects in electromagnetism. 

And I should like to note that there is a substantial difference between dielec- 

trics and magnetics. The dielectrics make only a new distribution of the available 

electric intensity, while the magnetics generate new magnetic intensity. As | alrea- 

dy said, if one will cut a narrow slot in the dielectric of a parallel plate conden- 

ser, one will measure exactly the same electric intensity E which one will measure 

at the same point if there is no dielectric. However if one will cut a narrow siot 

in the magnetic of a solenoid, one will measure a u times higher magnetic intensity 

than in the case where there is no magnetic. Thus the charactersof dielectrics and 

magnetics are totally different and those who try to present electric polarization 

and magnetization as two similar phenomena do a big harm. 

If Xp < 0, the MEDIUM is called DIAMAGNETIC, if Xp = 0, the medium is called NON- 

MAGNETIC, if Xy > 0, the medium is called PARAMAGNETIC and if Xp > 0, the medium 

is called FERROMAGNETIC. 

The magnetic induction B in ferromagnetic materials depends not only on H but al- 

so on the “hystory", i.e., on the magnetic intensities which have acted on the mate- 

rial before putting it in the field of the magnetic intensity H. The dependence of 

B on the "hystorical” MW (fig. 3) is called HYSTERESIS. 

Let at the intial moment the ferromagnetic material be not magnetized. Thus if 

Fig. 3. The hysteresis loop.
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the external magnetic intensity H is zero, the magnetic induction B produced by the 

magnetic will be zero. If H will begin to increase positively, B will also begin to 

increase positively and the dependence B = f(H) will be presented by the dashed line 

which begins from point 0. After coming to some maximum magnetic intensity Hmax’ let 

begin to diminish H. When coming at H = 0, the magnetic induction produced by the 

magnetic will be Br and is called RESIDUAL (or REMANENT) MAGNETIC INDUCTION. After 

changing the direction of the magnetic intensity and letting it increase negatively, 

we shall arrive at the intensity -Hc when the magnetic induction produced by the 

magnetic will be zero. I-HCI js called COERCIVE MAGNETIC INTENSITY (one says wrong- 

ly “COERCIVE FORCE"). After coming to -“max and returning again to Hmax’ we shall 

describe the closed loop in fig. 3 which is called the HYSTERESIS LOOP. 

Let me note that there is "hysteresis" also at the polarization of dielectrics. 

Magnetics with large residual magnetic induction are called PERMANENT MAGNETS (shor- 

tly MAGNETS) and dielectrics with large residual electric displacement are called 

ELECTRETS. 

In fig. 3 there are shown different kinds of permeabilities defined by the rela- 

tion 
u = arctan(B/H), (20.9) 

noting that in the figure the "arctan" is designated by ntanln, 

It can be shown that the area of the hysteresis loop in fig. 3 is equal to the 

energy which is lost in the form of heat for magnetizing, demagnatizina, anti-magne- 

tizing, demagnetizing and again magnetizing of unity volume of the magnetic. This 

energy is called HYSTERESIS LOSSES. The effect is no more a pure electromagnetic ef- 

fect as heat becomes involved. 

Let consider now a closed magnetic with length L and cross-section S, whose perme- 

ability is wu. If a coil with N turns is wound on it in which current I flows, this 

is called a TORUS. The most simple torus is the circular one, with radius R and ra- 

dius of the turns r = /5/7m. For R > r the magnetic intensity in the torus is as in 

2 very long solenoid (see (18.28)) H = 4nNI/cL and the magnetic induction is B = 

4munl/c, where n = N/L is the number of the windings on a unit of length. If not the 

whole length of the torus is covered by the N turns but only a certain part AL of it 

and u is high enough, the magnetic induction in the iron will be B = 4munl/c, where 

now n = N/aL. The iron on which the coil is wound is called CORE, and the iron which 

“conducts® the magnetic flux and closes it is called YOKE. 

1 introduce the notion MAGNETIC TENSION (official physics calls it "MAGNETOMOVING 

FORCE"), U, as folows 

Up = (4n/c)NL = (4n/c)nIL = HL = (B/u)L. (20.10) 

If u does not remain constant in the whole torus, we shall have 

U, = i(B/u)dL = §(e/us)dL = ¢gdL/uS = ¢R (20.11) 
L L 

This equation has a form similar to that of Ohm's law (16.5). Here the magnetic
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tension U“1 stays for the electric tension U, the magnetic flux % stays for the ele(- 

tric current I and the "magnetic resistance" Rm. called RELUCTANCE, stays for the 

electric resistance R. The analogy between Ohm's law in electricity (16.5) and 

"ohm's law in magnetism" (20.11) is purely formal and has no certain physical back. 

gro'un d. 

The quantity reciprocal to Rm 

Gm = I/Rm = pS/L r20.12; 

is called PERMEANCE. Thus permeability u corresponds to the conductivity v (see 

(16.3)). 

Let have a slot of small length 1 in the iron ring, and let us assume that the 

magnetic flux remains constant along the whole length of the torus, i.e., let us ag- 

sume that there is no dispersion of magnetic flux in the slot. 

Now we shall have for the reluctance, according to the last part of equation 

(20.11), 
Ro= (L= 1)/uS+ 1/S = {L+ 1(u-1)}/uS ¥ (L + wl)AS. (20.13). 

Thus an air slot of length 1 increases the reluctance as an additional iron part 

of length L' = ul. 

21. THE DIFFERENT KINDS OF ELECTRIC INTENSITY 

According to the concepts of official physics, which I shall call the first con- 

cepts, the EFFECTS on charges at rest are called ELECTRIC and the effects on charges 

in motion are called MAGNETIC. I also followed these concepts when separating the 

terms in the Newton-Lorentz equation (8.5) into two electric terms, presented under 

the common name "restricted electric intensity"”, and into two magnetic terms, the 

vector magnetic intensity and the scalar magnetic intensity (official physics, of 

course, ignores the latter). 

However the separation of the effects into electric and magnetic can be done fol- 

lowing other second concepts, namely, considering as electric the effects duve to the 

action of charges at rest and as magnetic those due to the action of charges in mo- 

tion. Now only the first term in the Newton-Lorentz equation (8.5) will be called 

electric and the other three terms magnetic, although the fourth term, in view of 

equation (8.8) can be considered as electric and as magnetic, noting, however, that 

to have 39/3t # 0, the charges must move. 

Both these separations of the effects in electromagnetism into electric and mag- 

netic have their positive and negative aspects and the best way is to consider all 

effects as common ELECTROMAGNETIC EFFECTS. In these third concepts, however, it is 

€onvenient to give to the notion “"electric" the pedominance and to try to evade as 

much as possible the notion "magnetic". 

Following these third concepts, I called the net force acting on a test charge 

"global electric intensity". I give to the different parts of this force 
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Eoour = - 9radé, Eg = - dA/dt, Egoo= (v/c)xrotA,  E.. = - (V/C)divA (21.1) 

the names: COULOMB ELECTRIC INTENSITY, TRANSFORMER ELECTRIC INTENSITY, MOTIONAL ELEC- 

TRIC INTENSITY and WHITTAKER ELECTRIC INTENSITY. 

The transformer electric intensity can have two substantially different aspects: 

a) REST-TRANSFORMER ELECTRIC INTENSITY (in case where the wires of the surroun- 

ding system are at rest and only the flowing currentschange) 

Erest-tr = - (1/c)aA/at. (21.2) 

b) MOTIONAL-TRANSFORMER ELECTRIC INTENSITY (in case where the currents flowing 

in the wires of the surrounding system are constant but the wires move, and the mag- 

netic potential becomes a composite function of time through the radius vectors r 

connecting the different current elements with the reference point) 
i 

o Mi{ri(t)} 1 n oA, ax, aAi dy; dA; 8z, N 

Erototr = " Tl 1 + == 7 (v,.grad)A, 
j=1 ot T Cifpax at ay 3t 9z At €4z} 1 

(21.3) 

where v; = - ari/at is the velocity of the i-th current element of the surrounding 

system which generates the magnetic potential Ai at the reference point. The time 

derivative of the radius vector r is taken with a negative sign, as r; points from 

the i-th current element to the reference point. If the surrounding system, i.e., 

the magnet, moves translatory, we shall have v, =V and thus 

Elmt-tr = (1/c)(v.grad)A. A (21.4) 

The motional-transformer electric intensity and the formula describing it were 

discovered by me(s), although every child must come to this "discovery" following 

the elementary mathematical logic. I repeat one® more (see Sect. 14) that in electro- 

magnetism there are only three discoveries: the law of Coulonb, Neumann and Newton 

(i.e., Newton's law for gravitational energy of two masses leading to the world 

gravitational energy of mass m, Uw’ which when taken with negative sing gives the 

time energy of m, eo). All. other electromagnetic "effects" are simple logical conclu- 

sions to which these three laws lead, after introducing the most simple models for 

conductors, dielectrics and magnetics. 

Why then official physics does not know the motional-transformer electric inten- 

sity? The answer is: Because of the introduction in physics of the wrong PRINCIPLE 

OF RELATIVITY. Indeed, according to this principle, all physical effects must depend 

only on the relative velocities of the bodies. Thus, this principle asserts that if 

at a motion of a wire with velocity v respectively to a magnet at rest the induced 

in the wire electric intensity is given by the third formula (21.1), then the elec- 

tric intensity induced in the wire at rest when the magnet moves with a velocity v 

will be 

Erelativistic = - Emt = - (1/€)wxrotA. (21.5) 

How many papers and books have been written to show that the stupidity (21.5) 

must be true!
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Let me present here the experiemt of Kennard'1*) which in my symplified varia- 

tion (fig. 4) was labeled by J. Maddox( 15) as "Stefan Marinov's puzzle". As a matter 

of fact, there is no puzzle at all, as Kennard's experiment is a trivial illustra- 

tion of the difference between the motional and motional-transformer electric inten- 

sities and the "puzzle" is only in the heads of the poor relativists. 

I shall present first the description of the puzzle by John Maddox' own uords:(ls) 

. from time to time, in Marinov's copious writings, there are relatively 
simple arguments that appear accessible even to those still at high school. 
Here is one series of gedanken experiments presented as if it were a Christmas 
puzzle (the original intension), with some helpful (or misleading) hints for 
its solution. 

The figure (fig. 4) shows a pair of circular conductors arranged as two con- 
centric circles. Equal electric currents are circulated in each, but in oppo- 
site directions. The simplest way of creating this arrangement is to cut 
through the concentric pair at some point and to join the loose ends in pairs 
by short engths of straight conductor. An electromotive force applied anywhere 
along the conductor will engender a current which must be everywhere uniform. 
At the bridged gap, there will be equal currents flowing in opposite direc- 
tions, so their influence on the magnetic fields in the concentric gap will be 
zero. 

The device is thus a means of arranging that there is a uniform magnetic 
field in the space between the concentric circles in a direction perpendicular 
to their plane (downwards into the plane of the paper when the current in the 
circuit flows in the direction indicated). The sensor in the experiment is a 
conductor long enough just to bridge the gap between the concentric circles 
and mounted on thin insulating support in such a way that it can be made to 
slide around the circle. The objective is to measure the voltage across the 
sliding conductor, either by a standard voltmeter or by a condenser whose ac- 
cumulated charge will be a measure of the voltage in a steady state. 

b- _lbo 

Fig. 4. Kennard's experiment.



- 72 - 

The simplest case is when the sliding conductor is at rest. Then there is 

no voltage. Right? Next comes the case in which the sliding conductor moves at 

uni form speed around the concentric gap, always pointing along a radius of the 
concentric circles. As the slider moves, it will cut through magnetic lines 
of force at constant rate, so that there will be a constant voltage across the 
ends. The polarity of the slider will depend only on the direction of the 
current in the concentric circuit, and not on whether the slider moves clock- 
wise or anticlockwise. Right again? 

Now come the tricky part, at least so far as Marinov is concerned. What 
happens if the sliding conductor is fixed in space, but the undrlying concen- 
tric circuit is rotated about its center? Relativity theory naturally predicts 
that the voltage across the sliding conductor would be the same as in the first 
experiment, and with the same polarity. On the other hand, questions may be 
raised about the degree to which the pattern of maanetic forces generated by 
the current is dragged around the ring by its rotation. Maybe there is a smal- 
ler voltage, but with the same polarity. What, asks Marinov, is the answer? 

The second conundrum is superficially simpler: simply rotate the apparatus 
in its own plane, about the center of the concentric circles. (There will be a 
small voltage due to Earth's magnetic field, but this may safely be neglected.) 
Is there now a voltage, and with what polarity? If the answer to the first 
question is "Yes" the answer to the second must be "No", and vice versa. Rea- 
ders are invited to make up their minds before reading on. 

Marinov's own answers are unambiguous. Vice versa wins the day. When the 
underlying concentrc circle is rotated and the slider is kept fixed, there is 
no voltage across the movable conductor. But when the whole apparatus is rota- 
ted about its centre, the voltage across the now-moving sliding conductor is 
identical with that obtained when the slider is moving relative to the concen- 
tric circuit. 

The implications are evidently important. The null answer to Marinov's first 
question implies that relativity has vanished through the window, the affirma- 
tive answer to the second implies that an isolated apparatus carrying a circu- 
lating current will generate a voltage when rotated, which raises forbidden 
questions about absolute space. 

Here are my comments: 

First about Maddox' language: 

1) For “electric tension" Maddox (and whole official physics) uses the word "vol- 

tage". But if following such a trend, we have to call the current "amperage", the 

magnetic intensity "teslage", etc. 

2) For “driving tension" Maddox (and whole official physics) uses the very bad 

word “"electromotive force". 

Then about Maddox' concepts: To speak at the end of the XXth century about "MAG- 

NETIC FORCE LINES" and to ruminate (as Faraday did) whether these lines will move 

when a current wire producing them moves is the same thing as at the end of XXth 

century to ride a horse on London's Strand. In electromagnetism there are only char- 

ges, moving charges (i.e., current elements), distances and a watch on the physi- 

cist's left hand. And nothing else! 

Finally about three Maddox' obvious errors, the first one being an essential er- 

ror and the two other fapsus calamiti: 

1) The tension along the slider can be measured only by the help of a condenser 

which accumulates the charges generated at its ends and by leading them to an elec- 

trometer, as KENNARD did in his EXPERIMENT.(M). In my quasi-Kennard experiment 

(see fig. 5 and Sect. 45) the availability of charges at the ends of the slider was 
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indicated electrometrically directly by "golden leaves". By the help of a “standard 

voltmeter" the difference between the motional and motional-transformer induced elec- 

tric tensions cannot be demonstrated, as at the ends of the slider one must put sli- 

ding contacts and at motion of the voltmeter with its wires leading to the sliding 

contacts a tension will be induced in these wires exactly equal and opposite to the 

tension induced in the slider when it moves with the same velocity. 

2) Maddox writes that the polarity on the slider will not depend on whether the 

slider mves clockwise or anti-clockwise. This is wrong. By changing the sense of 

the slider's rotation the polarity of the tension induced in the slider will also 

change. 

3) Maddox writes that the two concentric current wires generate a "uniform” mag- 

netic field. This is not true. The magnetic field is not uniform. It is the stron- 

gest near the concentric wires and the weakest along the middle circle between them 

Now I shall calculate the effects in Maddox' "puzzle" which is not at all a puz- 

2le but, as already said, a trivial illustration of the third formula (21.1) and 

of formula (21.4). 

To be able to make these calculations, let us find first the magnetic potential 

generated by two currents I flowing in two infinitely long parallel wires separated 

by a distance b. In fig. 5 two such wires are presented assuming that their lengths, 

d, tend to infinity. If the frame's origin is taken at the center of the rectangle, 

the ordinate of the upper wire will be b/2 and of the lower - b/2. The current in 

the rectangular loop in fig. 5 is flowing in positive, i.e., anti-clockwise direc- 

tion, thus in a direction opposite to the current's direction in fig. 4. 

- d — - 

I = T 1- 
Y 

z 

Fig. 5. The quasi-Kennard experiment.
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According to formula (18.15) we shall have for the x-component of A generated by 

the upper wire at a reference point taken on the y-axis 

d/2 ) 22,172 
A, = - (1/c) j'zi(b/?. )2 ey Y2y - (21/c)nd2 2 1(b/2 -y)” +d7/4) 

-df b/2 -y 
, (21.6) 

the components Ay and AZ being equal to zero. We see that for d -~ = the companent 

l\x tends to infinity. However the magnetic potential generated by the upper and low- 

er currents in fig. 5 is final also for infinitely long wires, namely 

- 2 42+ (b2 -t e M2 w2« (b2 +y)2 s a2 A = 
X b/2 -y c b/2 +y 

b/2 - bje -y l 7 
C b/2 +y' (21.7) 

where the result on the right side is written for d long enough and y can take any 

value except b/2 and - b/2. 

These two long d-wires can be connected with the short b-wires and so we shall 

obtain a rectangular loop with d > b. As the two b-wires are far enough from the 

reference point, their contribution to the magnetic potential can be neglected. 

I shall calculate the effects for the rectangular long loop in fig. 5. If the ra- 

dius R in fig-4 is large enough, i.e., if R > b, the same effects will be valid 

also for the concentric loops in fig. 4. 

The magnetic intensity for reference points along the y-axis will be if using 

formula (21.7) 

B = roth = - (3A /ay)i = —8-'2——2— (21.8) 
c(b? - ay?) 

and the electric intensity induced along the moving slider will be 

_ _ A _ 8vlby 
Empt = V*B/C = (sz/c)y = — (21.9) 

c2(b2 - ay2) 

For the electric tension induced along the slider with length b -bo we shall have 

b/2-bg/2 2 (b-bg)/2 
Urmt = (Ell’Ot) dy = (4vl/c”)Artanh(2y/b) = 

-b/2+b /2 y -(b-by)/2 

+2y/b| (0-Po)/2 2., 2b -b 2 (avl/c )(1/2)1n—l_ = (4v1/c)In 0 = (4vl/c“)In(2b/b_), (21.10) 
-2y/b -(b-bg)/2 bo 0 

where the result on the left is for b >> by. 

Meanwhile we shall have for the electric intensity induced in the slider at rest 

when the long rectangular loop in fig. 5 moves with velocity v 

E = (v.grad)A/c = (v/c)3A/3x = 0. (21.11) 
mot-tr 

When moving both the slider and the rectanoular loop in fig. 5 with a velocity v 

the electric intensity induced in the slider will be the sum of the motional (21.9)
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and motional-trans former (21.11) intensities, thus the tension induced will be g1- 

ven by formula (21.10). That's the whole "puzzle” of Dr. Maddox and the relativity 

blind. 

Let me note that the magnetic intensity produced by a very long wire at a dis- 

tance r, according to formula (21.8), in which we put b/2 = r, y = 0, will be 

B = (12)Byqy e = 211cr. (21.12) 
single 

The electric intensities (21.1) are the kinetic forces of the unit test charge. 

They can lead to the motion of the test charge in the conductor, and in such a case 

we call them ELECTROMOTIVE FORCES or they can be transferred from the charge on the 

metal lattice (ions' lattice) setting the whole conductor in motion, and in such a 

case we call them PONDEROMOTIVE FORCES. A1l four electric intensities (21.1) can 

lead to electromotive forces but only Emot and Ewhit can lead to ponderomotive for- 

ces. When v is the velocity of the test charge in the conductor, Epgt and Eyniy %- 

nerate ponderomotive forces, and when v is the velocity of the conductor, Eg, and 

Eyhit generate electromotive forces. If Egoyl and Ey. have pushed the charges to 

the extremities of the conductor and for them there is no more motional freedom, 

Ec0u] and Etr can also generate ponderomotive forces. 

The phenomenon of induction of electric intensity in conductors (and dielectrics) 

is called ELECTROMAGNETIC INDUCTION. The electromagnetic induction described by the 

third formula (21.1) is called MOTIONAL INDUCTION, by the fourth formula (21.1) 

WHITTAKER INDUCTION, by formula (21.7) REST-TRANSFORMER INDUCTION and by formula 

(21.3) MOTIONAL-TRANSFORMER INDUCTION. The induction of electric intensity in con- 

ductors (and dielectrics) according to the first formula (21.1) was called (see 

Sect. 20.1) ELECTROSTATIC INDUCTION. 

Now I shall point out at the reason which has not allowed to humanity, during 

two centuries of experimental work, to reveal the difference between the motional 

and motional-transformer inductions. . 

The reason is that for closed loops the induced motional and motional-trans for- 

mer electric tensions are equal with opposite signs. Indeed, we have for the ten- 

sions induced in a closed loop for the case where loop and magnet will be moved 

with a velocity v together in the laboratory 
(21.13) 

(Unot *Ymot-tr) = g(vxrotA).dr + {{(v.grad)A}.dr = grot{vxrotA + (v.grad)A}.dS = 0, 

where S is an arbitrary surface spanned over the loop L, and taking into account for- 

mula (7.10) and the mathematical rule that rot(grad) of any scalar function is equal 

to zero, we conclude that the surface integral is identically equal to zero. Thus 

we obtain ) 
Umot = - Umot-tr' (21.14) 

Proceeding from this equation which is not generally valid but only for closed 
loops Einstein created the monster called "theory of relativity" (see his 1905- 
paper).
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22. THE POTENTIALS, NOT THE INTENSITIES, DETERMINE THE ELECTROMAGNETIC EFFECTS 

The childishly simple theory obtained when proceeding from the axiomatic Coulomb, 

Neumann and Newton laws asserts that the electromagnetic effects are determined by 

the electric and magnetic potentials. Official physics asserts that the electromag- 

netic effects are determined by the electric and magnetic intensities (of course ig- 

noring the scalar magnetic intensity). 

The intensities are space and time derivatives of the potentials and, of course, 

they will also determine the electromignetic effects. But as any derivative carries 

less information than the function itself, so the intensities may not be able to ex- 

plain all effects which are described in all details by the potentials. 

In my theory, if a material system is given, then the electric and magnetic po- 

tentials are uniquely defined by the help of the definition equalities (8.1). Thus 

the potentials ¢ and A are the primordial quantities which determine the motion of 

the test charge. According to official physics, the primordial quantities which de- 

termine the motion of the test charge are the restricted electric intensity E and 

the vector magnetic intensity B. Thus for official physics any two potentials ¢, A 

which, when put in the first two equations (8.6) give the right intensities E, B, 

have the whole right to be treated as potentials of the system in consideration. 

Let us have two potentials ¢, A which give the right intensities E, B. Let us 

take an arbitrary function f(r,t) = f(x,y,z,t) of the radius vector of the reference 

point and of time and write two "new" potentials 

¢' = ¢ - af/at, A' = A + gradf. (22.1) 

If putting ¢' and A' in the first two equations (8.6), we shall obtain two new 

intensities 

E' = - grad(¢ - 3f/at) - (3/cat)(A + gradf) = - grad® - 3A/c3t = E, 

B' = rot(A + gradf) = rotA + rot(gradf) = rotA = B. (22.2) 

It tumns thus out that the new intensities are identical with the old ones. And 

according to official physics the new potentials have the same right to be conside- 

red as potentials of the system in consideration. Official physics calls the trans- 

formation (22.1) GAUGE TRANSFORMATION and the function f(r,t) GAUGE TRANSFORMATION 

FUNCTION. 

So, according to official physics, one can take as a gauge transformation func- 

tion the following one 

af/cot = ¢, (22.3) 

obtaining thus the new electric potential equal to zero in whole space. Taking into 

account also the equation of potential connection (8.8), we shall thus have 

o' =0, divA' = 0. (22.4) 

Official physics considers thus as justified to erase the reality of the elec- 



- 77 - 

tric and scalar magnetic fields. Monstruous! 

For my theory (and for the Divinity) the gauge transformation {22.1) is inadmis- 

sible and not the intensities but the potentials determine thoroughly the effects 

in electromagnetism. 

Now I shall show with simple considerations how the gauge transformation (22.1) 

may lead to contradictions with the physical reality. 

In Sect. 18 I have calculated A and B of a very long circular solenoid. Now ! 

shall do this for a very long solenoid with rectangular cross-sectuon. 

As the exact calculation is pretty complicated (1 have not seen such a calcula- 

tion in the literature!), I shall present here a very simple approximate calcula- 

tion which also leads to the right result. 

Formula (21.7) gives the magnetic potential generated by the rectangular loop 

shown in fig. 5 at the assumtion d >> b. Let us now suppose that there are n such 

loops on a unit of length along the z-axis going from z = ~otoz = =, As in such a 

case there will be ndz turns along the differential length dz, the resultant magne- 

tic potential is to be calculated according to the following formula, if we shall 

suppose b > |y|, i.e., if we shall suppose that the reference point is near to the 

Xx-axis, 
@ 2 2 o 

_ 21 (b/2 -y)¢ + 25, 1/2 1 by b _ A = 2L fing V% = L fn(1 - ——2 ) - (1 + =X )indz - 
X c-{o (b/2 +y)2 + z2 c-!o b2/4 +22 b2/4 +22 

by 2y g = - LY arctan(2z/b)| = - dmnly/c, (22.5) 
C.o b2/4 + 22 c - 

where I neglected y2 with respect to b2/4 and then I presented the logarithm as a 

power series neglecting the powers higher than the first. 

For the magnetic intensity we obtain 

B = rotA = - (3A/ay)2 = (4mnl/c), i.e., i.e., B, = 4ml/c. (22.6) 

Thus the vector of the magnetic intensity in the rectangular very long solenoid 

will have the following Cartesian components 

According to formula (18.26), we shall have for A and B in a circular very long 

solenoid 
A¢ = 2"nlp/c, B, = 4ml/c. (22.8) 

Thus the magnetic intensities in two very long solenoids with circular and rec- 

tangular cross-sections are equal. However the magnetic potentials are not. The mag- 

netic potential in the long solenoid with prolongated rectangular cross-section is 

given by formula (22.7), while, taking into account that Cartesian components of 

the magnetic potential in the circular solenoid are Ax == Asinp = - Aoy/p. 
¢ 

Ay = A¢cos¢ = A¢x/o. we shall have
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Aciv'c 

The transformation from the potential (22.7) to the potential (22.9), or vice ver- 

sa is, of course, a gauge transformation. Indeed, choosing the gauge transformation 

function in (22.1) in the form f(x,y,z,t) = Bzxy/Z, we obtain the potential (22.9) 

if proceeding from the potential (22.7) 

A' = A+ gradf = - yB X + (sz/z)i + (x32/2)§ = -(yaz/Z)fi + (xez/Z)y. (22.10) 

= (-2mnly/c, 2nnlx/c, 0) = (-yBZ/Z. sz/z. 0). (22.9) 

Thus, according to official physics, for magnetic potentials in two very long so- 

lenoids with circular and rectangular cross-sections (with d > b!) one can take 

both quantities (22.7) and (22.9) and all effects will be determined by the magne- 

tic intensity Bz given in (22.6) and (22.8) which has the same value in both sole- 

noids. 

To show that this is not true, let us put an electric charge q at the centers of 

both solenoids. If moving this charge with a velocity v.in both solenoids first 

along the x-axis and then along the y-axis, the acting force, of course, will be the 

“ame : 

a)motion of the charge along the x-axis 

f =B, = (Q/c)VRB,E = - (quB,/c)f = - (4nawl/c)f, (22.11) 

b) motion of the charge along the y-axis 

f=qf , = (q/c)v&‘xszi = (qvaz/c)i = (4nqvn1/c2)£. (22.12) 

However if moving the solenoids with a velocity v, leaving the charge at rest, 

the acting force will be 

a) motion of the solenoid with circular cross-section along the x-axis 

f = (a/c)(vR.grad)(-yB,%/2 + sz§/2) = (quz/2c)§ = (2nqvn1/c2)§. (22.13) 

a') mtion of the solenoid with rectangular cross-section along the x-axis 

f = (q/c)(vi.grad)(-yaz?t) =0, (22.14) 

b) motion of the solenoid with circular cross-section along the y-axis 

f= (q/c)(fl.grad)(-yflzfi/z + sz_‘y‘/Z) = - (quz/?.c)i = - (erqvnI/cz)i, (22.15) 

b') motion of the solenoid with the rectangular cross-section along the y-axis 

f = (a/c)(W.grad)(-yB %) = - (avB,/c) = - (amawnl/c?)R. (22.16) 

Thus the motion of the test charge in these two solenoid, at motion of the sole- 

noids, will be completely different, although the magnetic intensities in the sole- 

noids remin the same. 

1 should like to note that when calculating the integral (22.5) I integrated for 

z in the limits for -=to =, while when calculating the integral (18.23) I integra- 

ted for z in the limits from 0 to =. Easily can be seen that if in (18.23) I had al- 

so calculated in the limits from -= to =, @ value for A two times than tteright
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one should be obtained. I could not found an explanation for this discrepancy, no- 

ting that when B. B. Dasgupta (Am. J. Phys., 52, 258, (1984)) calculates directly 

the magnetic intensity in a long circular solenoid he integrates for z in the li- 

mits from - = to « and obtains the right result. Scott(lz) (p.322) makes the cal- 

culation through the magnetic potential, exactly as I do; he takes z in the limits 

from - = to = but the result which he then writes is two times smaller than this 

one which is to be obtained at a right mathematical calculation. I turn the atten- 

tion of the mathematicians to this strange discrepancy. 

23. ABSOLUTE AND RELATIVE NEWTON-LORENTZ EQUATIONS 

The Newton-Lorentz equation (8.4) is written in a frame attached to absolute 

space and I call it the ABSOLUTE NEWTON-LORENTZ EQUATION. 

Let us now find the form of the Newton-Lorentz equation in a laboratory (frame) 

moving with a velocity V in absolute space, where it will be called the RELATIVE 

NEWTON-LORENTZ EQUATION, begging once more the reader to pay attention to the dif- 

ference between the Lorentz and Marinov invariances considered in Sect. 1. Thus I 

shall look for the Newton-Lorentz equation not forthe system considered first with 

mass center at rest in absolute space and then with its mass center moving with ve- 

‘locity V in absolute space but if the observer would move with velocity ¥V in abso- 

lute space and the system considered remains always with mass center at rest in ab- 

solute space. 

Let the velocities of the test charge and of the charges of the system in consi- 

deration by v and vy with respect to absolute space and v', v1! with respect to the 

laboratory which moves with the velocity V in absolute space. 

As the velocity of the moving laboratory can be not high (the velocity of a la- 

boratory attached to the Earth is about 300 km/sec!), it is enough to use the Gali- 

lean formulas for the addition of velocites 

v=v +V, vy = vi' + v, (23.1) 

which can be obtained when differentiating formula (3.1) with respect to time (of 

course written in three dimensions), and not the Marinov formulas for addition of 

velocities which can be obtained (3.5) at the differentiation of formula (3.5). 

Let me note that in Ref. 5 | consider the effects which can be observed if the 

mass center of the system in consideration (usually a single particle) is conside- 

red first at rest in absolute space and then moving with a velocity v in absolute 

space. In this case the velocity v can be hich (even approaching c) and the Marinov 

or the Lorentz transformation formulas are to be used (I repeat - see Sect. 3 - when 

considered from an absolute point of view these two transformations lead to identi- 

cal results). 

Thus using (23.1), we shall have for the argument of the gradient in formula 

(8.3), having in mind the definition formulas for the potentials (8.1),
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where &' = ¢ is the relative electric potential which is equal to the absolute elec- 

tric potential, as the electric potential is not velocity dependent, 

is the relative magnetic potential 

of the system in consideration. 

= Jajvi/cr; 
, and the summations are taken over the n charges 

The total time derivatives of the absolute and relative magnetic potentials must 

be equal 

dA/dt = dA'/dt, (23.3) 

because dA/dt depends only on the changes (for a time dt) of the absolute velocities 

of the charges and dAYdt depends on changes of their relative velocities and these 

changes are equal, and on the changes of the distances between q; and q which are 

equal, too. 

Putting (23.2) and (23.3) into (8.3), we shall have, remembering the deduction 

of formula (7.11), 

d m(v + V) .. 13 Ca 

B (T (v vy TE T MIrEe ) ¢ g weroth - g vdi ¢ 

qv.V 
— gradé + I 2 gradé + = erotA t < (V grad)A, (23.4) 
C c 

where all laboratory quantities in (23.4) and further in this section are written 

without primes. 

Comparing formulas (23.4) and (8.4), we see that their"potential” (right) parts 

differ with the last four terms in equation (23.4). The electric absolute effects 

are proportional to V/c and can be neglected with respect to the relative (labora- 

tory) electric effects, however the magnetic absolute effects are not only compara- 

ble with the relative magnetic effects but, at V > v, are even bigger 

To demonstrate the validity and effectivity of the relative Newton-Lorentz equa- 

tion (23.4), let us consider again the rectangular current loop in fig. 5. Let us 

suppose that the loop mves with a velocity ¥ in absolute space and let us attach 

to it the moving frame K'. 

The test charge (the vertical wire in fig. 5) is first at rest in the laboratory, 

i.e., at rest with respect to the loop, and then it is moved with the laboratory ve- 

locity v. The electric intensity induced in the wire as a result of this motion, 

which can be observed by the help of a voltmeter that is all the time at rest in the 

laboratory, can be calculated from the following two equations 

cE = VxrotA + (V.grad)A, cE' = wxrotA + VxrotA + (V.grad)A, (23.5) 

and for the difference E' - E we obtain 

E' - E= Emot = (v/c)xrotA, (23.6)
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Let us now suppose that the test charge (the vertical wire in fig. 5) is always 

at rest in the laboratory and the loop originating the magnetic potential first is 

at rest in the laboratory and then is moved with velocity v. The electric intensity 

induced in the wire as a result of this motion cannot be observed by the help of a 

voltmeter but only by observing the change of the charges at the extremities of the 

vertical wire in fig. 5 and can be calculated as follows: The initial induced elec- 

tric intensity E will be the same as in (23.5). When the loop is set in motion with 

velocity v, we have to write the relative Newton-Lorentz equation in a frame K" mo- 

ving with a velocity V +v in absolute space, as only in this frame the originated 

laboratory magnetic potential will be as at the initial moment. As in this frame 

the test charge will have a velocity - v, we obtain 

CE" = - vxrotA + (v +V)xrotA + (v +V).grad A, (23.7) 

and for the difference E" - E we obtain 

E'"-E=E = (v.grad)A/c. (23.8) 
mot-tr 

That's the whole "secret" of the space-time absoluteness which neither Lorentz 

and Poincare nor Einstein and tutti{ quanti could grasp. A problem to be solved by 

children! 

If the loop and the test charge (the vertical wire in fig. 5) are first at rest 

in the laboratory and then move together with velocity v, instead of equation (23.7), 

we have to write 

cE"' (v + V)xrotA + {(v + V¥).grad}A, (23.9) 

and for the difference E"' - E we obtain 

E" = E =By * Enppotr 

The di fferent effects described by formulas (23.6), (23.8) and (23.10) were ob- 

served first by Faraday on his famous disk(ls) with closed loops by using sliding 

contacts and by Kennard(la) with open loops. By transforming Kennard's rotational 

experiment to an inertial experiment, called by me the quasi-Kennard experiment, I 

succeeded (see Sect. 45) to measure the Earth's absolute velocity by using the 

first formula (23.5). 

= vxrotA/c + (v.grad)A/c. (23.10) 

24. WHITTAKER'S AND NICOLAEV'S FORMULAS 

24.1. WHITTAKER'S FORMULA. 

Let us consider the Newton-Lorentz equation (8.4) and assume grad®¢ = 0, 3A/3t = 0 

and that the magnetic potential A is generated by a single current element ['dr' 

A = I'de'/cr. (24.1) 

Puttung 211 this in (8.4) and presenting qv as a current element ldr, we shall 

obtain for the kinetic force of the current element Idr (or for the potential force 

with which the current element I'dr' acts on the current element Idr) the following
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expression, where r ponts from dr' to dr, 

Jf = (117 ) {drrot(dr'/r) - drdiv(dr'/r)} = (11°7¢2r3)(drx(dr'xr)+ dr(dr'.r)} = 

(11'7¢2r3)((r.dr)dr® - (dr.dr')r + (r.dr')dr). (24.2) 

1 call (24.2) the WHITTAKER FORMULA, as allegedly Whittaker(l?) was the first 
one who has written it on a piece of paper without presenting some motivations. I 

write Whittaker's formula also in another form in which the places of the different 

term are exchanged 

df = (11'/3R31(r.dr')dr + (F.dr)dr’ - (dr.dr')r). (24.3) 

The GRASSMANN FORMULA(18) | wnich can be obtained exactly in the same way from the 
LORENTZ EQUATION, what is equation (8.4) without the last term, is (24.2) without 

the last term, i.e., 

df = (11'/¢2r3)((r.dr)dr' - (dr.dr')r). (24.4) 

The AMPERE FORMULA(19) has the form ’ 

df = (11'/¢2P)3(r.dr)(r.dr') - 2(dr.dr' ). (24.5) 

Ampere's formula (24.5) shows that the potential forces with which two current 

elements act one on another are equal, oppositely directed, and lie on the line joi- 

ning the two elements. Thus Ampere's formula preserves Newton's third law (at the 

deduction of his formula Ampere assumed that Newton's third law must be valid at 

the interaction of two current elements). 

Whittaker's formula (24.3) shows that the potential forces with which two current 

elements act one on another are equal, oppositely directed, but may not lie on the 

line joining the elements. Thus Whittaker's formula violates Newton's third law. 

Grassmann's formula (24.4) shows that the potential forces with which two cur- 

rent elements act one on another may be neither equal nor oppositely directed. This 

formula drastically violates Newton's third law and all professors in the world are 

caught by a panic fear when they have to teach it to the students. For this reason, 

although being the fundamental formula in official magnetism, it can be seen in on- 

1y one of ten textbooks. 

For the force with which a closed current loop L' acts on another closed current 

loop L all three formulas lead to the same result 

£ - - (II‘/CZ){{I(dr.dr‘/r3)r. (24.6) 

which preserves Newton's third law. The integration of formula (24.3) can easily be 

carried out as r'.clr/r3 = - d(1/r) and r.dr'/r3 = d(1/r) are total differentials and 

at the integratiin along the closed loops L and L', respectively, give zeros. 

On the same grounds one sees that Grassmann's formula also leads to formula (24.6). 

The conclusion that Ampere's formula also leads to formula (24.6) is based on a 

theorem demonstrated by Lyness(zo) that the force with which a closed current loop 

acts on a current element is the same according to Ampere's and Grassmann's formulas.
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Let me emphasize that according to formula (24.6) the forces with which two cur 

rent loops act one on another are equal and oppositely directed. Thus for an isola 

ted system consisting of two current loops the momentum conservation law will be 

conserved. However formula (24.6) does not say whether the torques with which two 

current loops act one on another will be equal and oppositely directed, thus it 

does not say whether for an isolated system consisting of two current loops also 

the angular momentum conservation law will be conserved. 

I could not prove this second theorem and to the best of my knowledge there is 

no such a theorem in the literature (of course when proceeding from Grassmann's for- 

mula, as Whittaker's formuta is practically unknown). 

This aspect for the interaction of the closed current loops remains for me open. 

As the reader will see in Sects. 50 and 56, I tried to construct machines which 

had to violate the angular momentum conservation law at the interaction of closed 

loops but without success and my intuition says that at the interaction of closed 

loops the angular momentum conservation law cannot be violated. 

As shown in Sect. 63, I succeeded to violate the angular momentum conservation 

law only by constructing a machine with non-closed current loops. 

Both Grassmann's and Ampere's formulas are wrong (see Sect. 26, 57, 58, 63) and 

Whittaker's formula is to be consdiered as the right one. I shall show, however, in 

Sect. 24.2 that certain theoretical considerations require the introduction of a 

certain change in Whittaker's formula which thus obtains a sligtly different mathema- 

tical form, called by me the NICOLAEV FORMULA. It is Nicolaev's formula which is 

confirmed by the experiments (see Sects. 57 -60). 

For the force with which a closed current loop L' acts on a current element Idr 

of the loop L we obtain from (24.3), taking again into account that r.dt"/r3 = d(Vr) 
is a total differential, 

of = (II'/cZ){' drxrot(dr'/r) = (Idr/c)X{' rot(I'dr'/cr) = (Idr/c)xB. (24.7) 

Thus the Whittaker scalar magnetic intensity produced by a closed current loop is 

2ero. For this reason during two centuries of experimental work humanity could not 

reveal the existence of the scalar magnetic field. 

However, as it will be shown in Sect. 24.2, the Nicolaev scalar magnetic inten- 

sity produced by a closed current loop may not be zero and one has to wonder that 

after two centuries of experimental work Nicolaev was, as a matter of fact, the 

first one who has observed it in childishly simple experiments. 

Before presenting Nicolaev's formula, let me show that if the current elements 

Idr and I'dr' are coplanar, then their Whittaker forces of interaction depend only 

on the distance between the elements but not on the angles defining their mutual 

positions. Indeed, according to formula (24.3), omitting the factor (lI'/czrz) and 

denoting by n = r/r the unit vector pointing from dr' to dr, we shall have for the 

square of the magnitude of the force df with which I'dr' acts on ldr, taking into
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taking into account that the angle between n and drxdr' is equal to n/2. 

(df)2 = {(n.dr')dr + (n.dr)dr' - (dr.dr')n]2 = {(n.dr')dr - (n.dr)dr'}2 + (.;1,-.d;-')2 = 

{nx(drxdr')]2 + (dr.dr')2 = drzdr'zsinza + drzdr'zcoszu = drzdr'z, (24.8) 

where a is the angle between dr and dr'. 

24.2. NICOLAEV'S FORMULA. 

Let us consider two parallel current elements Idr and I'dr' lying on the y-axis 

and pointing in parallel to the x-axis whose radius vectors are, respectively,0 and 

Yy, where ¢ = - yy is the vector distance pointing from the current element dr' to 

the current element dr. The force with which I'dr' acts on Idr, according to Whitta- 

ker's formula (24.3).will be 

df = - (11'7c2rd)drdr'r = (11'drdr/c?y2)§ (24.9) 

and will point towards dr', thus Idr will be attracted by I'dr'. The current ele- 

ment Idr will act on the current element I'dr' with the same and oppositely direc- 

ted attractive force. 

At the mutual attraction of Idr and I'dr', their magnetic energy, which is a ne- 

gative quantity, will decrease (its absolute value will increase) and the loss of 

magnetic energy will be equal to the gain of mechanical energy, as the kinetic ener- 

gies of the elements will increase. 

Let us now suppose that the same current elements lie on the x-axis pointing 

again along the x-axis and their radius vectors are, respectively, 0 and xf, where 

P = - xX is the vector distance pointing from dr' to dr. The force with which I'dr' 

acts on Idr, according to Whittaker's formula (24.3), will be 

df = (11'78r3)drdr'r = - (11'drdr'/c2x8)% (24.10) 

and will point towards dr, thus Idr will be repulsed by I'dr'. The current element 

Idr will act on the current element ['dr' with the same and oppositely directed re- 

pulsive force. 

At the mutual repulsion of Idr and I'dr', their magnetic energy, which is a ne- 

gative quantity, will increase (its absolute value will decrease) , but, on the 

other hand, also the kinetic energies of the two current elements, due to their re- 

pulsive forces, will increase. This is a patent violation of the energy conserva- 

tion law. Thus something is wrong with Whittaker's formula. 

There is also another delicate point. We cannot imagine how current elements may 

move along the current wire. 1f we have an elastic wire which we can extand mecha- 

nically, there will be motion of the line elements, but from an electromagnetic 

point of view, at such an extension, the electromagnetic system remains exactly the 

same and there is no motion of the current elements. 

Proceeding from these speculations, 1 decided to write Whittaker's term in Whit- 

taker's formula, i.e., the last term in formula (24.2) or the first term in formula 
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(24.3), in the following form 

O\ .2 
(r.dr')(1 - d"édrlz )dr = (r.dr') d';d' Lo (28.11; 

drcdr drédr' 

and 1 assumed ad hoc that the right formula describing the interaction between two 

current elements is not Whittaker's formula (24.3) but the following one 

df = (11'/¢2r3){(r.dr')(dredr ' )dp/drédr'? + (r.dp)dr' - (dr.dr')r}. (24.12) 

Now the Newton-Lorentz equation is to be written not in the form (8.5) but in the 

following form 

Eqlap = - 97ad® - BN/C3t + (v/C)xroth - (v/c){div/dA(vxdh)Z/vednd, (24.13) 

where the integral is to be taken over all charges (current elements) any of whom 

generates the elementary magnetic potential dA. 

And the scalar magnetic intensity will be presented not in the form (8.6) but in 

the folowing form 

S = - divfdA(vxdA)Z/vedR, (24.14) 

i.e., S will depend not only on the electric charges (and their velocities) of the 

surrounding system and on their distances to the test charge, but also on the direc- 

tion of motion of the test charge. Thus the scalar magnetic intensity of a given 

system acting on two test charges with different directions of motion are not equal. 

I call formula (24.12) NICOLAEV'S FORMULA and equation (24.13) the NEWTON-LORENTZ 

EQUATION IN ITS NICOLAEV'S FORM. Equation (8.5) will be then called the NEWTON-LO- 

RENTZ EQUATION IN ITS WHITTAKER'S FORM. And now the Whittaker electric intensity 

(21.1) is to be substituted by the NICOLAEV  ELECTRIC INTENSITY 

= - (v/c)div/dA(vxdA)2/vPdAZ, (24.15) 
l':m'c 

where the integral is taken over the surrounding system, every current element of 

which generates the elementary magnetic potential dA. 

Here I have to note that the equation of potential connection (8.8) preserves 

its validity, but we can no more replace Nicolaev's equation (24.13) by equation 

(8.9), so that the calculation of the global electric intensity is to be done pro- 

ceeding only from Nicolaev's equation (24.13). 

The reader has seen in Sect. 7 that the introduction of the Whittaker's term in 

equation (7.9), i.e., the middle term on the right side of equation (7.9), was not 

sufficiently lawful from a rigorous mathematical point of view. And now | make ano- 

ther completely ad hoc deformation of this formula. Thus the conclusion is to be 

done that the Divinity, when constructing the theoretical basis of electromagnetism, 

proceeding from the axiomatical Coulomb, Neumann and Newton laws, and when seeing 

that the theory leads to some unpleasant contradictions, trampling with both feet 

on the rigorous mathematical logic, introduced some "hocus pocus" tricks which no 

earthly scientist would allow himself to do. 
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What can I do, dear reader? You see, the Divinity is not perfect: ernanre divingy, 

28¢. And I am only his prophet. 

To a certain degree I can accept the introduction of the second term on the ri Sht 

side of equation (7.9) as a correct mathematical path (my friend Prof. U. Bartocci 

insists that the introduction of this term is inadmissible from a rigorous mathema. 

tical point of view). Indeed "physical mathematics" permits certain "frivolities" 

but the introduction of “"Nicolaev's correction" in the Whittaker's term is a com- 

plete mathematical fiasco. If Nicolaev's formula is the right one and the Divinity 

was perfect, He had to arrive at this formula by logical mathematical steps. 

When one introduces similar logical acrobatics in the edifice of electromagne- 

tism, one cannot more be sure whether the fundamental axioms will preserve their 

absolute validity. And if on our Earth there are clever children recognizing the 

Mephistophelian mathematical manipulations of the Divinity, they will be able to 

construct machines violating the most divine of all divine laws - the law of energy 

conservation (see Sect. 60). 

I must, of course, declare that I am not sure whether formula (24.12) introduceg 

by me is the right one. The way to establish whether it is the right one is the fo)- 

lowing: The effects predicted by Nicolaev's formula for all known fundamental expe- 

riments are to be calculated on a computer. If always the formula will give the 

right prediction, it is to be accepted as right until the day when somebody will 

show that the right formula is another one. 

I called formula (24.12) Nicolaev's formula, as the Russian physicist of Tomsk 

Genadi- Nicolaev, whom I met at the space-time conference in Saint Petersburg in 

1991, has done many experiments (see Sect. 58) showing that a formula of such a 

kind must be the right one. 

It is possible, of course, that the Divinity has not changed ad hoc the Whitta- 

ker term into the Nicolaev term. Maybe the Divinity writes the space-time enerqgy of 

two electric charges 4ys 9 moving with velocities Vs Yy not in the Neumann's form 

(2.14) but in the following form 

W= = (0099 Er3) (v xr) (vxr) v v, (24.16) 
or in the form 

W= - (q1qz\ll.v2/c2r'3){(\l1 -vz)xrlzl(vl -vz)z. (24.17) 

Now, perhaps, the Divinity will come to Nicolaev's formula on a rigorous mathe- 

matical way. I leave to the mathematicians the honour to prove this hypothesis, but 

1 must declare that the form (24.16) is complicated, unesthetic, and if the Divinity 

is a Divinity He would not choose such a ghastly expression in His axiomatics. 

In the next three sections I shall make calculations of the forces acting between the 

current wires in some simple but fundamental circuits. As pretty many experiments 

have shown that Grassmann's and Ampere's formulas are wrong (see Chapter VI), the 

formulas which still remain competitive are the Whittaker and Nicolaev formulas.
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Thus the calculation of the forces of interaction between current wires will be done 

when proceeding from Whittaker's and Nicolaev's formulas. In certain fundamnetal 

cases only, in order to reveal the differences, calculations also according to 

Grassmann's and Ampere's formulas will be done. 

25. THE PROPULSIVE AMPERE BRIDGE (PAB) 

The calculation of the magnetic force with which a closed current loop acts on 

a current element or on another open or closed loop is a simple calculation problem. 

However when we have to calculate the magnetic force with which a current loop acts 

on some of its current elements or a part of a current loop acts on other its part, 

inconveniences may appear, as the integrals may contain singularities. In such ca- 

ses we have to make use of certain calculation tricks to be able to evaluate the 

acting forces. ) 

As a first example, I shall calculate the force with which the current in one 

half of a circle of radius R and wire's radius r acts on the currenr in the other 

half. This force can be measured if at the points where the two half-circles make 

contact sliding contacts will be put. 

If we shall try to use Whittaker's formula (24.3) or Nicolaev's formula (24.12), 

taking as L' the one half of the circle ans as L the other half, we shall obtain 

an integral containing singularities, so that we must search for another way to 

solve the problem. 

According to formulas (18.20) and (18.9), the magnetic energy of this circle 

when current 1 flows in it will be 

W= - 122, (25.1) 

At an increase of the radius with dR, the magnetic energy will increase by dw 

and the magnitude of the force acting on an element dry of the circuit will be 

df = (dr,/20R)(dW/dR)= 3ndr)12/2/2c2/FR. (25.2) 

This force is perpendicular to dr, and obviously directed outside of the circle. 

Thus if the circular wire is done of elastic mterial, it will expand delivering 

mechanical energy and decreasing its magnetic energy. 

To obtain the net force acting on one half of the circle, we have to write in 

(25.2) drg = Rdp and to take the projection of the force acting on dry along the 

central radius of the half circle. Taking then into account that in a half circle 

there are two fourth circles, we shall have for the net force 

n/2 /2 20 - 
L 3nl"Rsing do 2,.2 

f =2/ dfsing = 2 = (3n//2c°)1°RIF. (25.3) 
cj; t{ 2/Zc“ /R 

Thus the force pushing any of the two half-circles is proportional to the square 

root of R/r. 

When the one half-circle is fixed to the laboratory and the other has sliding
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contacts and is free to move, we call it CIRCULAR PROPULSIVE AMPERE BRIDGE. Of 

course, when the half circle has moved a little, the circuit is no more circular 

and the pushing force may change. 

In fig. 6 the HALF-CIRCULAR PROPULSIVE AMPERE BRIDGE is shown. The half circle 

is called SHOULDER of the bridge and the vertical wires are called ARMS of the 

bridge. With the notations given in fig. 6 I have calculated21 the force pushing 

the half circle upwards when there are sliding contacts at the tops of the arms by 

using Whittaker's formula (24.3). The obtained integral which, of course, has sin- 

gularities is given in Ref. 21. I could not find a way to evaluate the force pushing 

the half-circular Ampere bridge but it surely must be near (if not equal) to the 

force (25.3). 

The classical half circular PROPULSIVE AMPERE BRIDGE (PAB) experiment was done 

by Ampere in 1823 and is presented in fig. 7. The difference between the bridges in 

figs. 6 and 7 is that in the former the bridge is in the plane of the arms, while 

in the latter it is perpendicular to the plane of the arms. The pushing force acting 

on these two bridges surely must be the same. 

Ampere filled the troughs in fig. 7 with mercury, so that excellent sliding con- 

tacts have been realized. Tait exchanged the copper bridge of Ampere by a glass tube 

filled with mercury to show that the effect is magnetic and not due to some surface 

forces at the contact mercury-copper. 

Instead of the half-circle in figs. 6 and 7 one can put a shoulder with a linear 

Fig. 6. Half-circular propulsive Ampere bridge.



Fig. 7. The classical propulsive Ampere bridge. 

form or with a I-form. 

The arms of the Ampere bridge can be done very long (theoretically one can assume 

them infinitely long) and the sliding contacts can be put at any two points at equal 

distances from the shoulder, so that the upper parts of the arms will be propulsive 

and lower stationary. 

According to Nicolaev's formula, as there are no forces between colinear currents, 

with the increase of the propulsive arms the pushing force in the half-circular Am- 

pere bridge must diminish. As far as I know, measurements for establishing the exis- 

tence (or non-existence) of such an effect have not been done. 

On the other hand, the change in the magnetic energy of the whole circuit of the 

Ampere bridge does not depend on the fact at which points of the arms the sliding 

contacts are taken and thus, for a definite circuit, the pushing force cannot depend 

on the relation between the propulsive and stationary arms. Here one has to take al- 

so into account that when increasing the length of the propulsive arms a pushing 

force acting on these propulsive arms appears generated by the current in the “oppo- 

site" shoulder. 

26. ACTION OF RECTANGULAR CURRENT ON A PART OF IT 

26.1. CALCULATION WITH WHITTAKER'S FORMULA. 

Now I shall calculate the longitudinal magnetic force acting on the current wire 

BC in the rectangular circuit ODEF in fig. 8. It was claimed by Nicolaev(n) that 

there is a longitudinal force acting on the wire BC and that he has observed it. Now 

I shall show that, according to Whittaker's formula the net longitudinal force acting 

on the current BC is null. 

The wire BC can slide at the contacts B and S and has the length L. The action of 

the currents between points A and B and between points C and D on the current in the
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wire BC is entirely symmetric and opposite, so that the force acting on BC will be 

determined by the action of the currents in the wires OA,with length D, DE and FO, 

with lengths H, and EF, with length D +L +2a. 

First, for more simple calculation, I shall assume that D and H are very long, 

so that the action of the currents EF and FO can be neglected. Whittaker's formula 

(24.3) gives for the x-component of the force (equal to the total force) with which 

the current OA acts on the current BC, by denoting dr = dx, dr' = dx', r = x +a +x', 

where x' = 0 at point A and x = 0 at point B (the last two assumptions lead to more 

simple limits in the integrals), 

C A L L 
(Fn), = (127¢E)] [arar'/e? = (127¢)fax Jax's(x' +a +x)? = (1%/¢F)fan/(x +a) = 

B O o o o 

(12/&)in(1 + L/a). (26.1) 

For the x-component of the force with which the current DE acts on the current BC 

we obtain, denoting dr = dx, dr' = dy, r = {(x+a)2 + yzll/2 and taking x = 0 at 

point C CE 
L 

(fpe)y = (Izlcz)é I(r.dr')dr/r3 = - (Iz/cz)jdxf ydy/{(x+a)2 +y2}3/2 = 
D o o 

L 
- (B fax(xa) = - (127¢E)n(1 + L/a). (26.2) 

0 

Comparing formulas (26.1) and (26.2), we see that according to Whittaker's for- 

mula there is no force acting on the wire BC. 

Formulas (26.1) and (26.2) show that, if x' = y, the current elements along the 

longitudinal wire OA which are near to point A act on the current elements along 

the wire BC with larger forces than the current elements along the transverse wire 

DE which are near to point D (put, for example, x' = y = 0). When the distances 

x' = y become larger and larger the first forces diminish more rapidly than the se- 

cond forces, for certain xc') =Y, = b they become equal and then the first forces 

become less than the second ones. By equalizing the elementary forces in (26.1) and 

(26.2) and by putting there x(') o P b, we obtain 

/(b +a +x)2 = b/{(x+a)? + b4)¥2, (26.3) 
from where we can find b as a function of a and x. 

Let us now find the net longitudinal force acting on the current BC when the ac- 

tion of the currents in EF and FO cannot be neglected. The integration will be more 

complicated but in the same lines as in the above two formulas; remenbering that 

[(1+ x2) Y24y < Arsinhx = nix + (1+x2)2y, (26.4) 
we shall have: 

The x-component of the force with which the current OA acts on the current BC will 

be L D 
2,2 2 2, 2. (D+a)(L+a) 

= ! ' = 1 . . (Fon)y = (I7/c )£dx ;()dx /(x' +a +x) (1°/¢“)In 2(D+Lta) (26.5)



-9] - 

The x-component of the force with which the current DE acts on the current B(C 

will be 
L H 2, Lai2 12 

(Fge)y = 12762V [dx fydy/((xva)? +y21¥2 (12/c2nakL +a + 4 L)t ) (256, 
: o o (L+a){a + (K¢ +2a2)1/2) 

The x-component of the force with which the current FO acts on the current BC 

can be found directly from the result (26.6) taking it with negative sign and ex- 

changing a for D+a 

(frod = (1272 ynsa)o s 2 + 02 s(@a)¥8 
(D+a)[D + L + a + {H2 +(D+L+a)2} /2] 

(26.7) 

The x-component of the force with which the current EF acts on the current BC 

will be, if taking x' = 0 at point F and dividing the integral on x' into two inte- 

grals, as for x' < D+ta+x the x-component of the force is negative and for x' > Dra+x 

positive, : 

(Fep), = - % '}dx"*a*" (Dratx-x')dx' 12 }dx‘“*z‘ (x'-D-a-x)dx’ 
X 

0 0 {(Dfll»a«rx-x‘)2 +H2}IZ 2 5 Dratx {(x'-D-a-x)2 +h2)3/2 i 

(IIZ/CZ)]n{a + (H2 +a2)1/2}[0 +L+a+ {Hz + (D+L+a)2}l/z] 
. (26.8) 

[D+a+ {H2 + (D+a)2}l/2][L +a+ (W 4+ (L+a)2}1/2] 

The net longitudinal force acting on the wire BC will be the sum of the forces 

dr' E 

D a L F 

Fig. 8. Rectangular current loop acting on a part of it.


