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div(ExB) = B.rotE - E.rotB, (14.2)
we can write (14.1) in the form
2 2
S E *+B , JE+-C div(E8) = 0. (14.3)
at  8n 4n

Let us now integrate this equation over an arbitrary volume V containing our elec-
tromagnetic system and use the Gauss teorem for the last term

2 , r2
o (E€ + B ExB
T 6 e — IV ¢ {J.E dv + ¢ ¢

4 —E-;T-.(B = 0, [14.&)

where the last integral is spread over the surface S of the volume V.
Taking into account the second equation (9.14), we can write

n
{J.E dv = _flqivi.s. (14.5)
1=

where n is the number of the charges in the system.
Putting this into (14.4) and taking into account equation (8.7), assuming there

S =-divh = 0, as this is a rather ad hoc introduced term, we obtain
3 (E2 + B2 d N C )
at { 8n AT igleoi e g(E"B)-dS = 0. (14.6)

If we consider the integral on the right side as time (kinetic) energy, then,
having in mind the energy conservation law (2.15), we have to assume that the cor-
responding "particles"” move with the velocity c away from the volume V and that in
a unit of time the energy

I = E%-Exa (14.7)

crosses a unit surface placed at right angles to I, which is called (ELECTROMAGNETIC)
ENERGY FLUX DENSITY. The quantity

s - -1 gxp (14.8)
4n

is the density of this energy (at a snap shot) and is called the POYNTING VECTOR.
It turns out (see Chapter IV) that E and B in the last term of (14.6) are to be

considered as the electric and magnetic intensities radiated by the charges of the
system and thus are to be denoted by Erad and B

rad’ Then E and B in the first term
of (14.6) are to be considered as the radiation electric and magnetic intensities
radiated by the charges of the system which still have not left the volume V and
thus are also to be denoted by Erad and B

rag- The middle term in (14.6) is the change
of the time energy of the system which, according to formulas (14.5) and (B.7), is

equal to the change of the potential electric energy of the system. Thus, for a given
short time interval, the change of electric (or time) energy of the system is equal
to the change of the radiated energy in the volume V (given by the first term in
(14.6)) plus the energy radiated outside the volume V (given by the third term in
(14.6)). Thus E and B in formula (14.6) do not represent the potential electric and
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magnetic intensities, Epot' Bpot’ but only the radiation electric and magnetic in-
tensities Erad’ Brad' In Chapter IV we shall see that Erad = Brad and Er'ad'arad = (.

Considering the potential electric and magnetic fields as physical realities, of-
ficial physics brought into the theory a big mess. I repeat, the potential electric
and magnetic intensities are mathematical quantities which exist only in our heads.
They have neither energy density (the energy density near the charges will be infi-
nitely big and thus incalculable!) nor momentum density. Meanwhile the radiated
electric and magnetic intensities are physically existing quantities with the ener-
gy density

5 = (€2 + B%)/8n (14.9)

and momentum density I given by formula (14.7).

Concluding this chapter, let me say that the Maxwell-Lorentz equations are not
some "physical" equations invented by somebody. They are the most trivial mathema-
tical deductions from the Newton-Lorentz equation (vihich in its official form can
be found in Maxwell's "Treatise" and thus it is unjustified to call it "Lorent:z
equation") and the equations (9.16) connecting densities and potentials, which,
from their part, are the most obvious results of the definition equations (8.1) for
the potentials and the definition equations (9.14) for the densities.

But neither the Newton-Lorentz equation is some "physical" equation, as it is a
trivial mathematical result from the Coulomb law (axiom V), the Neumann law (axiom
VIII), the form of the time energy of mass m moving with velocity v (axiom VI) and
the energy conservation law (axiom IX). I have, however, to emphasize that I spent
J years in Sofia of intensive mental work some 20 years ago to arrive at the deduc-
tion of the Lorentz equation from the mentioned four axioms, and my last 10 years
in Graz to understand that at this deduction I had to take dA/dt in the form(7.9)
and not without the term vdivA, as I did in Sofia, and to write it thus in the New-
ton-Lorentz form. Nicolaev's experiments, however, impelled me to introduce some

changes in this term (see Sect. 24).

Thus, according to me, in classical physics there are only four discoveries:

1) Coulomb's law in electromagnetism and Newton's law in gravitation.

2) Neumann's law (as a matter if fact, the coronation of Neumann's law as a fun-
damental physical axiom was done by me).

3) The form of the time energy of a particle.

4) The energy conservation law.

As my own physical discovery, I consider the revelation of the Marinov-aether
character of light propagation. In my CLASSICAL PH\'SICS(S) the Marinov-aether cha-
racter of light propagation is introduced in the theory as an axiom (the tenth axiom)
I did not follow this way in the present book, as the volume of Sect. 2 had to be
substantially increased, meanwhile I wish to explain with this book what electromag-

netism is in the most laconic way.
As another physical discovery is to be considered the introduction, rather ad hec.
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of the scalar magnetic intensity in its Whittaker's and Nicolaev's forms (see Sect.
24), noting, however, that the form of the scalar magnetic intensity is still not
established definitely. The “"discovery" of the motional-transformer induction and
the "invention" of the perpetua mobilia MAMIN COLIU, VENETIN COLIU and SIBEREAN CO-
LIU (see Chapter VI) are simple logical results to which all logically thinking
children have to come alone when analyzing the Newton-Lorentz equation. Thus, accor-
ding to me, discovery is the creation of an axiomatical assertion (which is right!),
The mathematical deductions from the axiomatical assertions cannot be discoveries.

I do not consider the coronation of the potentials as the primary physical quan-
tities and the decoronation of the intensities as an achievemnt of some value, as
those are obvious things and ever& logically thinking child has to come alone to
these conclusions. Indeed, if A is given, then every ordinary child is able the cal-
culate quickly Etr' BandsS, but if E, ., B and S are given neither the most extra-
ordinary professor is able to calculate A.

Neither the establishment of space and time as absolute categories nor the rejec-
tion of the principles of relativity and equivalence can be considered as achieve-
ments of some value., as every normally thinking child accepts these assertions as

true and not the oposite.
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M. LOW-ACCELERATION ELECTROMAGNET] sy

15, INTRODUCTION

Further I shall no more pay attention to gravimagretism and only some “neural gic”
aspects of electromagnetism will be treated.

In Chapter III the acceleration of the electric charges of the system considered
will be supposed low and thus their radiation will be neglected (it will be shown
in Chapter IV that the energy radiated by the electric charges is proportional to
their accelerations).

The electromagetic equations obtained in Chapter II are for a system of single
particles. But the electromagnetic systems with which we experiment only rarely con-
sist of single particles. The predominant part of the material systems are MEDIA
which are built in a very complicated manner of single charged and uncharged parti-
cles. We shall disregard the way in which the media are built and we shall accept
very simple models elaborated by humanity after centuries of experimental work and
observations. It turns out that by accepting these genuine models of the media,
we can calculate a large quantity of the electromagnetic phenomena by the help of
the simple equations deduced in Chapter Il for a system of single particles. This
simple approach to the problems of electromagnetism is called PHENOMENOLOGICAL AP-
PROACH.

I shall work in this book with the most simple media: current conducting wires,
condensers filled by air (vacuum) or by dielectrics and coils filled by air or by
magnetics, appealing to the most general and elementary knowledges of the reader,
elaborated in the secondary schools or by reading some popular booklets.

16. RESISTANCE

The ELECTRIC CURRENT I which flows in a metal wire (which will be called also
CONDUCTOR) is the quantity of electric charge dq which crosses its cross-section for

the time dt
I = dq/dt. (16.1)

The electric tension dU along a length dr of the conductor will be given by for-
mula (13.7), where E will be the acting electric intensity which I call also DRI-
VING ELECTRIC INTENSITY. Consequently the tension U along the whole or a part of
the conductor will be called DRIVING ELECTRIC TENSION.

It was experimentally established (by Ohm in 1826) that the current flowing in a
conductor is proportional to the electric tension between its end points

I = GU, (16.2)

where the coefficient G which depends on the material substance of the conductor and
on its geometry is called CONDUCTANCE. Equation (16.2) is called OHM'S LAN.
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The conductance of a wire with a unit length and unit cross-section is called
CONDUCTIVITY and is denoted by y. Thus the conductance of a wire with length L and
cross-section S will be

G = yS/L. (16.3)

RESISTANCE R, which is much more used in practice, is the quantity inverse to

conductance
R=1/G = L/YS = pL/S, (16.4)
where p is called RESISTIVITY and this is the resistance of wire with unit length

and unit cross-section. Thus we can write
I = U/R. (16.5)

[f the resistance of a wire is zero, it is called SUPER-CONDUCTOR.

Let us suppose that dq charges have been transferred along a conductor for a time
dt, the tension between whose end points is U = A¢, where A} is the difference be-
tween the electric potentials at the end points. According to the first formula
(8.2), in which we have to write Ue, dq and A® instead of U, q and ¢, the electric
energy of the system will change with

dUe = dqA® = dqU = Iudt, (16.6)

where equation (16.1) was taken into account.
The change of the energy in a time unit

P = dUefdt (16.7)
is called POWER, and from (16.6) and (16.7) we obtain
P - 1U = RIZ = UY/R. (16.8)

This power is liberated as heat in the conductor and is lost by the source Sup-
plying the driving tension. HEAT is a physical phenomenon outside the domain of
electromagnetism and for this reason Ohm's law cannot be obtained from my axioma-
tics. In "pure" electromagnetism, which is to be thoroughly explained by logical
deductions from the axiomatics, the conductors must be super-conductors.

Until the present time it is not clear how electric current propagates along me-
tal wires. The phenomenological model proposed by me(ﬁ) is the following:

The so-called valence electrons, which are the current conducting electrons, are
loosely connected with the ions of the metal lattice, jumping continuously from one
atom to another and forming a kind of "electron gas" throughout the solid ions'
lattice. If there is no electric tension applied to the wire, the motion of the va-
lence electrons i1s chaotic and their average velocity is zero. When an electric
tension is applied to the wire (imagine, for simplicity, that an electric pulse is
applied to the left end of the wire by supplying a surplus of electrons), the chao-

tically moving electrons from the left end, where the concentration exeeds the con-
centration of the valence electrons, begin to move with a preferred average velo-
city to the right, where the electron concentration is less. The average "DRIFT
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VELOCITY" of the electrons, Vdp? is of the order of mm/sec. This velocity can e
easily calculated if assuming that all valence electrons in the wire are currert
conducting electrons. However the velocity, Von® with which the "electrons’' concen-
tration" propagates through the wire, and which 1 call the ENERGY VELOCITY, is of
the order of c, as can be established by measuring the velocity with which the cur-
rent pulse propagates. Thus, after a second the exceeding electrons which were Sup-
plied to the left wire's end will be transferred to 1 mm, but the electrons' concen-
tration will be exceeding at a distance of 300,000 km. If the wire is not closeq,
the electrons' concentration will be reflected from the right end and returning bac
will be reflected from the left end, and so on, until the surplus electrons will be
distributed uniformly troughout the wire and its surface will become equipotential.

As the electrons are absolutely identical and indistingushable one from another,
we must conclude that in a second the exceeding electrons were transferred at a dis-
tance of 300,000 km. (Indeed, if 100 electrons in file move on ] cm each in a second
or the first electron moves on 100 cm, while the other 99 remain at rest, the phy-
sical result is the same.)

If there is a consumer at the right end of the wire and the supply of surplus
electrons at the left end is continuous, the electric energy from the supplier to
the consumer will proceed along the wire with the velocity Vep = ©-

It must be clear that the velocity of the single electrons is neither the drift
velocity, Vgpr NOr the energy velocity, Van-* Every electron moves chaotically. It is
possible that some of the supplied surplus electrons may cover the whole wire with
a velocity ¢ and be always in the "electrons'’ surplus concentration". The probabili-
ty for such a case is vdr/"en' Even in a wire without electric tension there is a
possibility that some electron will cross it from one end to the other with a velo-
city ¢, however the probability for such a case is zero. Although the electric ener-
gy transferred along a wire is something material and can be measured in energy
units transferred in a time unit along a length unit, official physics speaks about
a foggy "propagation of interactoon", being unable to explain what a physical quan-
tity “interaction"” is and with which measuring instruments and in which measuring
units is to be measured. For certain official physicists the “interaction" propagate:
through the metal, for other it surrounds the conductor similarly to the aura
which surrounds the human body according to the assertions of the Indian yogas.

My friends Mi]nes(lo) and Pappas(u) have done experiments for measuring the ve-
locity of propagation of current pulses along copper wires and have established
that it is much higher than ¢, at least 10 or even 100 times higher than c.

It turns out that only the directed motion of the electrons liberates heat but
the chaotic motion does not. This result makés the hypothesis about the “"electron
gas" shaky. Thus after so many years of experimentation with currents in metal wires
one can mdke the conclusion: we still do not know the mechanism of propagation of

the current.
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17. CAPACITANCE

It is obvious that the potential difference (tension) between a charged conduc-
tor and other uncharged conductors in its neighbourhood (the latter usually are
connected to earth) will be proportinal to the electric charge q on the conductor

U= (1/0C)q, (17.1)

where the coefficient 1/C depends on the geometry of the whole systemandC is cal-
led CAPACITANCE. The number C shows the quantity of electric charge with which the
conductor is to be charged to increase its potential with unity respectively to
the uncharged conductors. A material system which has capacitance is called CONDEN-
SER (one can use also the word CAPACITOR).

Let us have a condenser consisting of two parallel plates of surface S, the dis-
tance between which is d. One can use equation (13.8) and the second equation (13.2)
to find its capacitance. The volume of integration V will be chosen so that it con-
tains one of the plates, the charge density on which is Q. Designating the surface
of the volume V by S', we shall have

¢ E.dS = 47 [QdV = 4nq, (17.2)
S! v
where q is the whole charge on the plate (the charge on the other plate is -q if
the latter is not earthed). If d is small with respect to ¥S, we can assume that
the electric intensity is different from zero only between the plates, being there
constant and perpendicular to the plates. Thus we shall have

ES = 4nq. (17.3)

As E = U/d, we obtain from here
q = (S/4nd)u. (17.4)

Comparing this with (17.1), we obtain for the capacitance of the parallel plate
condenser
C = S/4nd. (17.5)
We see from equation (17.4), if denoting the surface charge density by I = q/S,
that the electric intensity between two nearly placed parallel plates charged ho-
mogeneously with surface charge density I is
E = 4nL. (17.6)

Let us find now the capacitance of a cylindrical condenser with coaxial plates
with radii Ri and Re of the internal and external plates and length L, supposing
Re - Ri << L.

We use again formula (13.8) and choose the volume of integration V to contain
only the internal cylindrical plate. Assuming again that E is different from zero
only in the space between the plates where it is constant and perpendicular to the

condenser's axis, we shall obtain from (13.8), if choosing the integration surface
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crossing the space between the plates to be cylindrical with 3 radius r,

E(2nrL) = 4nqg. (17.7,
Thus the tension between the plates will be
R Re
U= [ E.dr = (2q9/L)f dr/r = 2qIn(R /R.)/L. (17.8°
R. R1 e 1

1
Comparing this with (17.1), we obtain for the capacitance of the cylindrical conden-

ser
C = L/2In(R/R,). (17.9)

Denoting the surface charge density on the internal cylindrical plate by L =
q/21R;L, we see from equation (17.7) that the electric intensity between two nearly
placed coaxial cylindrical plates charged homogeneously with surface charge density
L, at a distance r from the cylindrical axis, is

E = 4ﬂ£Ri/r. (17.10)

From here, at r = Ri’ we obtain formula (17.6)

18. INDUCTANCE

18. 1. INDUCTANCE OF A LOOP.

Let us have a circuit in which current I flows. This current will generate the
magnetic potential A(r) at a reference point with radius vector r. Let us take the
line integral of A along a certain closed loop L. According to Stokes theorem, ta-
king into account the second formula (8.6), we shall have

$ A.dr = [rotA.dS = [ B.dS = ¢, (18.1)
L S S
where S is an arbitrary surface spanned on the closed line L and ¢ is called MAGNE-
TIC FLUX (electric potential and magnetic flux are designated by the same syabol
and be attentive to not confound them!) crossing the surface S.

If denoting by Ao the magnetic potential generated by a unit current flowing in

the circuit, and if taking the line L to be the circuit itself, we shall have

¢ = 1 §A,.dr = LI, (18.2)
L

where
L = fAO.d' = éBo.dS (18.3)

is called INDUCTANCE of the circuit and Bo is the magnetic intensity generated by a
unit current flowing in the circuit on the arbitrary surface S spanned on the cir-
cuit. Thus L is the magnetic flux generated by a unit current flowing in the cir-
cuit through any surface S spanned on the circuit.
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18.2. INDUCTANCE OF A CIRCULAR LOOP.

Let us calculate the inductance of the most simple circular circuit (fig.2).

We take the reference framwith origin at the center of the loop and we shall
calculate first the magnetic potential generated by an arbitrary current element at
an internal (in the loop) and at an external (outside the loop) reference point,
both lying on the positive x-axis. Let us denote the distance from the frame's ori-
gin to both reference points by Pint and Pext’ and from the loop's element by Fint
and Foxt® The radius of the circular loop is denoted by R and the angle between the
x-axis and the radius vector to the loop's element (which, for definiteness, let us
consider in the first quadrant) by ¢. The flow of the current will be taken in the
positive direction (i.e., counter-clockwise).

[f dq is the quantity of electric charge which for a time dt is transferred
through the cross-section of the wire, we can write dqv = dqdr/dt = Idr, where | =
dg/dt is the flowing current, dr is the line element of the loop taken along the
current, and the expression Idr is called CURRENT ELEMENT. Resolving the vector of
the current element into a horizontal and vertical components, we see that the ac-
tions of the horizontal components of two symmetric current elements in the
first and fourth quadrants will annihilate one another, so that only the action of
the vertical component will remain. Thus we concude that the magnetic potential at
the internal and external reference points originated by both symmetric current ele-
ments in the first and fourth quadrants will be parallel to the y-axis. For the ab-
solute value, according to the definition formula for A (8.1), we obtain

_ o1 drcos¢ _ 2IRcos¢ d¢
dA-z - »
cr c(p® - 20Rcos + RZ)1/2

(18.4)

where by r and p either the internal or external distances are denoted, and we put
dr = Rdp.

To obtain the magnetic potential originated by the current in the whole loop, we
have to integrate formula (18.4) for ¢ changing from 0 to w, thus obtaining

nl o)
c (R2 - D2)1/2

(for p < R),
T

c 2 2,\1/2 2
o (p° - 2pRcos¢ + RE) nl R
7. RZ)I/Z (for p > R). (18.5)

The value of the elliptical integral in (18.5) can be found in a standard table
of integrals. This formula shows that the magnetic potential increases rapidly from
0 at the center of the loop to infinity at the loop, and then it decreases slowly
to 0 at infinity.

As the magnetic potential of a circular loop has rotational symmetry, the magne-
tic intensity produced by it can be calculated immediately, using the expression for

rotation in cylindrical coordinates, taking A = (Ap, A¢. Az) = (0, A, 0), where for
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Fig. 2. Circular loop in which current flows.
A the expressions (18.5) are to be taken,
2 _ .2
nL_2RT -0 3 (forp< R),
C (Rz - p2)3/2
B - roth = L 3(PA) 5 _ (18.6)
P dp . R2

. Z (forp> R).
C - )2

This formula shows that the magnetic intensity increases from (2nl/cR)Z at the
center of the loop to »Z at the loop inside and then decreases from - =z at the
loop outside to 0 at infinity.

Let us calculate the inductance of the circular circuit according to the second
formula (18.3) for p < R
onl 2 R

2
Yau R
= & = o, .7
2np dp — R+ = (Rz-pz)llzg (18.7)

[ 2r? - o
o (RZ - p?)3/?

o=

L = gBO.dS =

We see that by substituting the 1imit "R" in the solution on the right side, we
obtain infinity. Thus the inductance of a circular infinitely thin loop is infini-
tely large.

If the radius of the circular wire is r, we have to divide the integral (18.7)
into two integrals: one in the limits from O to R - r, in which the magnetic inten-
sity in the circle of radius R -r is generated by the whole current (in our case
I =1), and one in the limits from R -r to R, in which the current is a function of
the integration variable. In our case we have to take I = (R-p)/r, if the current
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is distributed homogenecusly across the wire's cross-section. As, however, one needs
to know the inductance for alternating currents, we have to take into account the
SKIN EFFECT, according to which there will be more current near the cylindrical sur-
face of the conductor and less along its axis, so that the calculation beComes more
complicated and the inductance of a loop becomes dependent on the current frequency.
Thus, for homogeneously distributed current, the integral (18.7) must be separa-

ted into the following two integrals

2 R-r .2 2 2 R 2 2
n® 2R -0% _ g(p?) + T [ (Re0)(2R” =07) 4 2) (184

c 0 (R2-02)3/2 c R-r r(R2-02)3/2

L =

The calculation of the second integral is pretty complicated but in a good appro-
ximation (good enough for any practical use) we can solve it as follows: Let us mul-
tiply and divide the second integrand by R+p and let us put p = R everywhere in the
second integrand besides the expressions R2 -pz.

The values of the two integrals in (18.8) will be
n2R(2R - r) - 4n?Re _ 2/Fn%RY/? (18.9)

_afR-r)? ) - _
c(2rr -r&)V2  cr2rr-r)V/2  c2rr)V/2 oF

L

where the result on the right is obtained by neglecting r with respect to R.
Thus the first integral in (18.8) gives only the half of the right value.
Scott(lz) also tried to find the inductance of a circular wire and after horrible
calculations, where the physical substance of the problem was completely lost, obtai-

ned the following result

Lecore = (4m/C)R(IN(8R/T) - 7/4}. (18.10)

Scott's formula is definitely wrong, as the truncated first integral (18.8),
which I shall denote by Li.,,. 3nd which gives a value definitely lower than the
true inductance Lyyye, is always larger than Lg.o¢t- Here are the relations
Ltrunc/Lscott for R/r = 103 1005 1000: Lypypc/Lgcott™ 1-113 2.215 4.84. The rela-
tions of the true enough inductance L given by the value on the right of (18.9) to

Scott's value for the same ratios R/r are: L/Lgcott = 2-745 4.515 9.71.

There are also two aesthetical reasons showing that Scott's formula is wrong:
1) His theretical demonstration is too complicated and MARINOV'S RAZOR says: Ogii
teonia complicata ¢ sbagliata. 2) The number 7/4 indicates that something is rot-
ten in the formula: the Divinity cannot put this nurmber in a formula describing

such a symmetric effect.
King(l3) gives in Handbuch dea Phys<k, the most authoritative source of physics

knowledge, the following formula for the inductance of a circular loop

= (/) R(Rer) Y 2((27K -K)K(1/2,K) = (2/K)E(1/2.K)), (18.11)

Lking

where
k=(1-kHe K' = r/(2R +r), (18.12)

and
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n/2 n/2
K(n/2,k) = | dé . E(n/2,k) = f (1 - k%sin24)M%  (18.13
o (1 - kzsin2¢)1/2 0

are the complete elliptic integrals of first and second kinds which are tabulated
as functions of k.

When R/r is sufficiently large, k' is small and the elliptic integrals may be
expounded in powers of K'. For the leading terms King has obtained

L = (4n/c)R{1n(8R/r) - 2}. (18.14)

king

King's formula is very near to Scott's formula, and this is an indication that
both authors have calculated well. Why then are their formulas wrong? - According
to me, the explanation for the substantial difference between my formula (18.9), on
one side, and formulas (18.10) and (18.14) of Scott and King, on the other side, is
that they have done the calculations proceeding from the first formula (18.3) (as a
mtter of fact, from (18.16)), while I did the calculation proceeding from the se-
cond formula (18.3). My way is mathematically simple and straighforward, the ways
of Scott and King are horribly complicated, as they lead to elliptical integrals.

Nevertheless, as the left and right formulas (18.3) are mathematically indenti-
cal, one has to obtain identical results. I leave to the mathematicians the honour
to find why the calculations of Scott and King have led to a wrong result.

18.3. NEUMANN'S FORMULA.
Returning to formula (18.3) and taking into account that

AR = ¢ldr/cr, A, = gdr/cr, (18.15)
L L
we can write the left side of formula (18.3) in the form
L = ¢ ¢dr.dr'/cr. (18.16)
L L

Let us have now two circuits Ll and L2. Let us take the line integral of the mag-
netic potential Al generated by the current I, in the first circuit along the con-
tour Ly of the second circuit. Using again Stokes theorem, as in formula (18.1), we

shall have

§ Aj.dr, = [ roth .dS, = [ B),.dS, = ¢ (18.17)

L, s, ¢,
where Sp is an arbitrary surface spanned on the closed line L, and ¢12 is the mag-
netic flux generated by the current in the loop Lj which crosses the surface of the
loop Lp. If A} is generated by a unit current and if taking into account formula
(18.15), we can write for the MUTUAL INDUCTANCE of L, due to the unit current in L,

Lyp = f A y.dry = g;‘ dry.dry/cry,. (18.18)
2 1L2

12°

This is called the FORMULA OF NEUMANN and obviously L2 = Loy
Now the inductance (18.16) can be called SELF-INDUCTANCE and denoted by L;.
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If we have N circular loops with the same radius overlapping one another and if
the common radius of their filaments is much less than the loop's radius, we can
make the following conclusion: The self-inductance of every loop will be L (see
(18.9)) and the mutual inductance of every loop caused by the other N-1 loops wil]
be (N-1)L. Thus the inductance of all N loops will be NZL.

I[f the distances between the loops are considerable and their positions one with

respect to another arbitrary, every single mutual inductance will be less than L,
and thus the inductance of the whole system will be less than N2L.

Let me note that if the currents I, and I are flowing, respectively, in the
coils Ly and Lz, the mutual inductance of whom is Ljp, then the mutual magnetic
energy of the currents in these two coils will be (see (2.14) and (18.18))

g = - § zéqlvl.qzvz/czrlz s, leldrl.lzdrzfczrlz e - 1L,
1 1 (18.19)
where the relations I;dr) = qv;, Ipdrp, = qpvp have been taken into account.
As a matter of fact, I called equation (2.14) Neumann's law when proceeding from
formula (18.19).
For the magnetic energy of the current elements in a single coil with self-induc-

tance L we shall have
W= - (1/2)L1° (18.20)

and it is a negative quantity, meanwhile in any official text-book on electromagne-

tism this enerqy is taken wrongly as a positive quantity.

It is easy to see that on the right side of (18.20) the coefficient 1/2 is to be
taken, as at the integration in (18.16) we take once the product of dri with drj and
once the product of drj with dri'. so that we shall obtain twice their magnetic ener-
gy. Of course, we can write (18.20) without the factor 1/2 but then this factor is
to be put in formula (18.16).

I have, however, to emphasize that the calculation of the self-inductance accor-
ding to formula (18.16) inevitably leads to improper integrals, as the distance rii
between the element dr, at the one integration along L and the element dr. = dr, at

the other integration along the same contour L is zero. Perhaps here is to be sear-

ched for the wrong calculations of Scott and King.

18.4. INDUCTANCE OF AN INFINITELY LONG SOLENOID.

Let us consider N circular loops of radius R with a common axis and having the
same distance one from another, in which current I flows. We can assume, for mathe-
matical rigorosity, that the N circular loops are independent and any has its own
source of electric tension, but, of course, we shall have in mind that all loops are
connected, building thus a COIL, and that there is only one source of electric ten-
sion. Such a cylindrical coil is called also SOLENOID. If the length of the soleno-
id is 1, there will be n = N/1 TURNS (of WINDINGS) on a unit of its length. When 1
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tends to infinity, the solenoid is called INFINITE.
The magnetic potential in the plane of any circular loop generated by its own

current is given by formula (18.5). The magnetic potential generated in a plane
whose distance from the loop's plane is z will be

21R COS¢ @
" I (18.21)
€ 0 (p% - 2pRcos¢ + RZ + 23)1/2

The magnetic potential generated by all windings of an infinite solenoid at a
point with cylindrical coordinates p, ¢, z will be

N=c @ 1|
2IR cost dé
A= YA =22 [ndz | : (18.22)
i=1 ! ¢ o 0 (02 - 2pRcos¢ + Re + 22)1/2

This integral can be evaluated by dividing it in two parts, from 0 to n/2 and from
7/2 to m, writing in the second integral = - ¢ for ¢ and interchanging its limits.
benoting then a, = p2 - 2pRcos¢ + Rz, and a, = p2 + 2pRcoso + Rz, we shall have

o 17/2
2nIR 1 _ 1 } (18.23)

dz [ cos¢ d{ . :
fdz | (2 + 22" (o 4 2) 12

A =

Interchanging now the order of integration, we can easily take the integral on z
n/2 as z + (Zz + 31)1/2 ® ZHIR n/2

2nIR
cos ¢ d¢1n{ cos¢ déIn(a,/a,) =
j 1z+(z +a)l/2 c I &
n/2 2
2n(I:R [ coso doIn{® + 2pRcos¢ + RZ}. (18.24)
0 p:2 - 2pRcose + Rz

Let us denote a = 2;:.Ft/(p2 +R2) and use integration by parts, the one part being
cosgdp and the other the logarithm. The integrated part vanishes and the integral,
except for the factor 2nIR/c, becomes

n/2 . 2 n/2
2a sin¢ do_ -{¢ (1 -az)llzarctar: tand } ) (18.25)
bf l-a coszap (1- az)l/? (]

as the reader can readily verify by differentiation.
The expression arctan{tang/(1 _a2)1/2} approaches n/2 as ¢ » n/2. Using

(1-a2)2 = (% - 20%R% + oM)M21(02 « BB} = |02 - RE|/(o% + RE),  (18.26)

we obtain 2nlR 2 Rz | |
p=cme 28 Tyl ). (18.27)
o PR 2 DZ + RC
Thus . )
2anlp/c, 4mnl/c, or p < R),
A = - 1 3(eA) (18.28)
21mlR2ICp. p 3p 0, (for p > R).

The inductance of one loop of this infinite solenoid, according to both formulas
(18.3), will have the value



- 60 -

2

L = 4n°nR%/c = 4mnS/c = 4nNS/cl, (18.29)

where S = nRz is the cross-section of the solenoid.
The inductance of all N = nl loops of the solenoid will be

L = 4:%n?1R%/¢ = ann®1S/c = 4nN®S/c). (18.30)

Thic formula remains valid for a final solenoid if 1 is big enough with respect
to R. Otherwise the inductance of the solenoid will be less than (18.30).

19. RESISTORS, CAPACITORS AND INDUCTORS

Every conductor has a certain resistance, capacitance and inductance. Conductors
for which only one of these qualities is predominant are called, respectively, RE-
SISTORS, CAPACITORS (condensers) and INDUCTORS. An IDEAL RESISTOR is this one whose
capacitance and inductance are (or can be accepted) zeros. An IDEAL CAPACITOR is
this one whose resistance and inductance are zeros. An IDEAL INDUCTOR is this one
whose resistance and capacitance are zeros.

In Sect. 16 the energetic aspects of the resistors have been already considered.

Let us now consider the energetic aspects of capacitors and inductors.

To charge a condenser having capacitance C with total charge q,, we have to spent

the following energy (see the first formula (8.2) in which we have to exchange the
potential difference A by the tension U)

Qo %

U, = [ Uk = [ (a/C)dq = q5/2c = cu/e, (19.1)
0 0

where U and q are the variable tension and electric charge of the condenser during
the charging and U0 is the tension of the charged condenser. This energy will be in-
vested as MECHANICAL ENERGY ("mechanical energy" is another name of kinetic energy)
because always when we add a new portion of charge dq the repulsion from the side

of the charges on the condenser q becomes greater and gretaer. The electric energy
Ue stored in the condenser can then be liberated when discharging it.

Usually a condenser is charged by a SOURCE OF ELECTRIC TENSION. The sources of
electric tension can be chemical (a CELL, called also a BATTERY), thermal (thermo-
couple), mechanical (friction of two solid bodies), piezoelectric (appearing at an
increased pressure on 2 solid body) induced (see Sect. 21). Every source of electric
tension has its own resistance, called internal resistance and denoted by Ri‘ 1f
Ri = 0, the source is called IDEAL.

The tension produced by a source of electric tension is called usually DRIVING
(ELECTRIC) TENSION and is denoted by Uy For Ugr official physics uses the very
bad term ELECTROMOTIVE FORCE. Also the very bad term VOLTAGE is used for electric
tension,

A charged condenser is also a source of electric tension. If we connect its
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plates by a conductor with zero resistance, it will discharge momentarily with an
infinitely large current.

Let now discharge a condenser with capacitance C through a resistor with resi;-
tance R. The sum of the tensions on the condenser and on the resistor must be zers
and thus we can write

Rl +q/C=0 or Rdq/dt = - q/C, (19.72,

where q is the charge on the condenser at the moment t. The differential equation
(19.2) can be solved directly and its integral is

t
? dqa/q = - (1/RC) [dt. (19.3]
9 0
Taking the integral, we obtain
'In(q/qo) = - t/RC or qQ = qoe-t/RC' (19.4)

and we have further
[ = (qolRC)e

The value RC is now seen to be the time it takes the charge, current and poten-
tial to drop to 1/e = 0.368 of its initial value and is called the TIME CONSTANT of
the circuit containing the capacitance C and the resistance R.

Now if we charge up a condenser with a cell of driving tension Udr and wires of
total resistance R (including the eventual internal resistance R, of the cell), the
driving tension must be equal to the sum of the tensions on the resistor and on the

1 o-t/RC
o , U=Ue : (19.5)

condenser

U . RI + q/C or wdr = RCdq/dt + q. (19.6)

d

To solve this differential equation in the form of the indefinite integral as
above, let us define the charge Q = cudr - q as the difference between the final
charge CUq, on the condenser and its value q at any time t. Then q = CU4. - Q and
dq/dt = - dQ/dt, so that equation (19.6) reads

Cl.ldr = - RCAQ/dt + wdr -Q, (19.7)
or
dQ/Q = - (1/RC)dt. (19.8)
Thus we obtain as above
0 = e t/FE, (19.9)
and as for q = O there is Oo = CUgp, we have
-t/RC
Cudr -q= CUdre , (19.10)
which rearranges to
-t/RC
q =y (1 - e R, (19.11)
from which we derive
-t/RC - -t/R .
[ = u, e /R0, U= Uy (1- e t/RE) (19.12)

Let us consider now an ideal inductor with inductance L.
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If the current in the inductor changes, an electric tension will appear in the
inductor directed oppositely to the driving tension producing the current. The value
of this electric tension can be found proceeding from the Newton-Lorentz equation
(8.5). Putting in this equation ¢=0, v = 0, as the inductor is not charged elec-
trically and is at rest, we shall find for the global electric intensity which in
this case 1 shall call INDUCED ELECTRIC INTENSITY

E, g = - Aat, (19.13)

where A is the magnetic potential along the inductor.

For the INDUCED ELECTRIC TENSION which will appear along the whole length of the
inductor L (do not confound the length of the inductor with its inductance) we shall
have (see (18.2))

Uipg = $Eing-dr = - (3/cat)gA.dr = - (3/cat)[B.dS = - ae/cat = - Lal/cat, (19.14)
L L S

where B 1s the magnetic intensity through the surface é spanned over the contour L
of the inductor (or the sum of the surfaces spanned on its single windings), ¢ is
the common magnetic flux and I is the current flowing in the inductor. Equation
(19.14) is called FARADAY'S LAW, although it is the most trivial result from the
Newton-Lorentz equation.

Equation (19.14) shows that only when the magnetic potential along the inductor's
wires changes in time, an induced electric intensity and thus also induced electric
tension do appear. And the magnetic potential changes in time only when the current
changes in time.

I repeat here the statement presented in many of my articles: Electromagnetism
can (and has to) be explained operating only with the potentials. One introduces
the notion "intensities” (and "fluxes") only for mathematical or memonic convenien-
ces. So, for example, working with the intensity and not with the potentials, I "cal-
culated" in Sect. 18 the inductance of a circular loop much more easily than it can
be done if working with the potential. On the other hand, however, the calculation
with the intensities my lead to wrong results (see Sect. 22), as the intensities
are derivatives of the potentials and contain less mathematical information.

Let us now make a circuit of an ideal inductor with inductance L, a resistor of
resistance R and a cell with driving tension Ugr. The driving tension plus the in-
duced tension must be equal to the tension on the resistor, called also OHMIC (ELEC-
TRIC) TENSION,

U, + Uind = U or Udr = RI + Ldl/cdt. (19.15)

dr
Let us multiply this equation by the charge dq = Idt which has passed for a time

dt along the circuit, i.e., from the positive electrode of the source to its nega-

tive source, and integrate then the equation for the time from 0 to t

t t 2 Io

gudrldt = gRI dt +£ Lidl/c, (19.16)
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where I = 0 is the current at the initial zero moment and l0 = Ugp/R is the current
when dI/dt = 0.

The integral on the left gives the energy lost by the source, the first integral
on the right gives the energy liberated as heat in the resistor and the second inte-
gral on the right gives the magnetic energy

2 .
W= - LIg2c (19.17;

taken with an opposite sign, as according to equation (2.15) the electromagnetic
energy of a system is equal to the difference of its electric and magnetic energies.
The magnetic energy (19.17) is stored in the inductor which can be then liberated
when shortcircuiting the driving tension.

At such a short-circuiting of the external driving tension U4,, the driving ten-
sion in the circuit will be the induced tension and it must be equal to the ohmic

tension

Uind = U or - Ldl/cdt = RI. (19.18)

This is a differential equation of the form of the equation (19.3) and the solu-
tion, by analogy with the solution (19.4), will be

1= 1" RUL, (19.19)

where t = 0 now refers to the time of the short-circuiting of the source.

Let us find the amount of heat liberated in the resistor. From the equation
(19.18), after the multiplication by Idt and integration for the time from t = 0 to
t = =, we obtain

For2 2 2
JRISdt = - L fldI/c = LIO/Zc. (19.20)
0 Iy
which is just the extra amount of energy originally provided by the cell and “pum-
ped" in the inductor. Now, at the short-circuiting of the external driving tension,
this energy will transform in heat in the resistor.

If there is a circuit with a source of driving tension, resistor, capacitor and

inductor connected in series, Udr and U, ., = - Ldl/cdt must be equal to the sum of

ind
the tensions on the resistor, RI, and on the condenser, q/C, and rearranging we have

t
Uy = RI + q/C + LdI/cdt with q = [ldt. (19.21)
0

The solution of this differential equation for a harmonic driving tension is gi-
ven in Sect. 54.2 and I show then that it obviously violates the energy conservation.
At the end of this section let me give the formulas for the resistance, capaci-

tance and inductance of two resistors, capacitors and inductors connected:

In series: R = Rl + R2' 1/C = l/C1 +‘1/C2. L=1L,+ Lo, (19.22)
In parallel:1/R = 1/R, + /Ry, C=0Cy+ Gy, VL = VL + VL. (19.23)
Indeed:

1) For two resistances in series we have U = Uy + Up, i.e., RI = R1l + Rpl, and
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for two resistance in parallel we have | = I} + Ip, i.e., U/R = U/Ry + U/Rp.

2) For two condensers in series we have U = Uy + Up, i.e., U/C = U/Cy + U/Cp, as
the charges on condensers in series are equal, and for two condensers in parallel
we have q = Q) + G2, i.e., CU = CyU + CoU, as the tensions on two condensers in pa-
rallel are equal.

3) For two inductors in series we have U = Uy + Up, i.e., -Ldl/dt = - Ljdl/dt -
Lpdl/dt, and for two inductors in parallel we have I = Iy + Ip, i.e., U/wl = Ufuwly +

=

U/wly, where w is the frequency of the alternating current (see Sect. 54.2).

20. DIELECTRICS AND MAGNETICS
20.1. DIELECTRICS.

Any medium is current conducting but the differences in the conductivities of

the different media may be very large. The media with high conductivity are called
CONDUCTORS, with low conductivity INSULATORS (or DIELECTRICS) and with medium con-
ductivity SEMI-CONDUCTORS.

If a conductor is placed in an electric field, its side which points along the
field will become charged positively and the opposite side, pointing against the
field, negatively. This effect is called ELECTRIC POLARIZATION BY INDUCTION (short-
ly INDUCTION POLARIZATION) or ELECTROSTATIC INDUCTION.

If a dielectric is placed in an electric field, it becomes also polarized. We
call this kind of electrostatic induction DIELECTRIC (or MOLECULAR) POLARIZATION.
The difference between these two kinds of polarization is that the positive (resp.,
negative) charges provoking the induction polarization can be taken away and the
conductor will then remain charged as a whole negatively (resp., positively), while
the “polarization charges" of a dielectric cannot be taken away, and we call them
BOUND CHARGES. The induction polarization appears because the FREE CHARGES (elec-
trons) of the conductor increase their concentration at one side of the body and
decrease it at the opposite side in an external electric field, while the dielec¢-
tric polarization appears because the molecules of the dielectric become polarized,
i.e., the one end of the molecule becomes positive and the other end negative (the
molecules of certain media can always be polarized but they arrange themselves along
a8 definite direction only in an external electric field.

The physical essence of the molecular polarization as well as the physical es-
sence of the conduction of current are not clear enough.

Further only the dielectric polarization will be considered.

Let us have a parallel plate condenser between whose plates a dielectric is pla-
ced. When applying to the condenser a certain extermal tension U, on the left of
its plates N positive charges will appear and on the right N negative charges. Af-
ter the polarization of the dielectric (which appears with a certain very short re-
tardation), on the left side of the dielectric N - AN negative charges will appear
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and on its right side N - AN positive charges. The negative bound charges on the
left dielectric's surface will attract by induction other positive charges from the
positive electrode of the source of driving tension and the charge on the left cor-
denser's plate will increase, causing further increase of the bound charges on the
left dielectric's surface. This process will go on until an equilibrium will be in-
stalled (the same appears on the right plate of the condenser). At the equilibrium
state there will be 4nyN negative charges on the left dielectric's surface and

N + d4axN = N(1 + 4ny) positive charges on the left condenser's plate, where ; is
called ELECTRIC SUSCEPTIBILITY of the dielectric and

€ =1+ 4y (20.1

is called PERMITTIVITY of the dielectric (in the system SI one writes ¢ = 1+ ;).
Now the electric intensity generated by the charges on the condenser's plates,

called ELECTRIC DISPLACEMENT, will be
D=c¢k=(1l+4nx)E =E+ 4uP, (20.2)

where
P = xE (20.3)
is called ELECTRIC POLARIZATION of the dielectric and it is 1/4w part of the elec-
tric intensity generated by the bound electric charges on the right and left surfa-

ces of the dielectric.
The tension acting on the condenser U = E.d (d is the distance between the con-

denser's plates) before putting the dielectric and after putting it is the same,
thus the electric intensity between the plates also remains the same, E, and it is
the sum of the electric intensity D produced by the charges on the condensers plates
and the electric intensity - 4mxE = - 4nP produced by the bound charges on the left
and right surfaces of the dielectric. Thus the physically right equation is not equa-

tion (20.2) but the following one
E=D-4nxE =D - 4P, (20.4)

The electric displacement D cannot be measured. One can measure only the electric
intensity E by making, for example, 3 narrow cut in the dielectric of the condenser
and by putting there the measuring instrument.

20.2 MAGNETICS.
An inductor along which current flows is called ELECTROMAGNET (or shortly MAGNET).

A solenoid is the most simple magnet. The centers of the solenoid's end windings are
called POLES. NORTH POLE is the one from which one sees the current in the windings
flowing counter-clockwise, and SOUTH POLE is the one from which one sees the current
flowing clockwise. A small magnet is called also MAGNETIC DIPOLE.

According to the older concepts, the molecules of the media are magnetic dipoles.
Usually these dipoles are pointing chaotically in all space directions. When puyt in
an external magnetic field B, the magnetic dipoles arrange themselves along the
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field and the medium becomes magnet as a whole. The molecules may be not magnetic
dipoles but they can become such only when the medium is put in an external magnetic
field. This effect is called MAGNETIZATION and magnetizable medium is called MAGNE-
TIC.

According to the now-a-day concepts not the whole molecule is a magnetic dipole
but only the electrons are such magnetic dipoles with a strictly determined dipole
moment and a strictly defined angular momentum, called SPIN, which is parallel to
the magnetic dipole moment. When a magnetic is put in an external magnetic field
those are the magnetic dipole moments of the electrons which arrange themselves
along the field and so the magnetic becomes a8 magnet.

Let us put a magnetic in a long solenoid whose magnetic intensity is B = (4nnl/kc)2
(see formula (18.28)). The magnetic field produced by the magnetic after its magne-
tization in the solenoid (which appears with a certain time retardation, especially
when the magnetic goes out of the solenoid - see the Ewing effect in Sect. 54.5)
s

4nM = 4anB. (20.5)
where M is called MAGNETIZATION of the magnetic (it is equal to 1/4n part of the
magnetic intensity produced by the magnetic) and X is called MAGNETIC SUSCEPTIBILI-

TY.
The resultant magnetic intensity in the solenoid will be

B, =B+ dnM = (1+ dnx )B = B (20.6)

and
=14 4nxm (20.7)

is called PERMEABILITY of the magnetic (in the system SI one writes p = 1 + xm).
Thus the resultant magnetic intensity is the sum of the initial magnetic intensi-
ty B and the magnetic intensity (20.5) produced by the magnetized magnetic, so that
(20.6) is the physically right equation.
Usually one denotes the initial magnetic intensity by H and the symbol B is pre-
served for the final magnetic intensity when the magnetic is put in the electromag-
net, calling it inthis case MAGNETIC INDUCTION (or MAGNETIC FLUX DENSITY). With these

notations equation (20.6) is to be written as follows

B =H+ 4mM = H. (20.8)

I am definitely against this separation. The magnetic intensity H and the "magne-
tic induction” B are not two different physical quantities. Whether in the solenoid
there is a magnetic or another solenoid generating the same additional intensity
.41M = 4nxn,P. there areabsolutely no differences in the physical effects produced by
these two systems. For this reason ] shall very often use the word "magnetic inten-
sity” both for H and B, and often I shall use the synmbol B for H and the symbol Bu
for the "magnetic induction" B, trying to emphasize in this way that between B and
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H there is no principal physical difference.
The most tragic thing is that in the measuring system SI H and B are measured in
di fferent measuring units. For this reason this system must never be used in theore-

tical considerations when one wishes to understand the physical essence of the ef-
fects in electromagnetism.

And 1 should like to note that there is a substantial difference between dielec-
trics and magnetics. The dielectrics make only a new distribution of the available
electric intensity, while the magnetics generate new magnetic intensity. As | alrea-
dy said, if one will cut a narrow slot in the dielectric of a parallel plate conden-
ser, one will measure exactly the same electric intensity E which one will measure
at the same point if there is no dielectric. However if one will cut a narrow slot
in the magnetic of a solenoid, one will measure a u times higher magnetic intensity
than in the case where there is no magnetic. Thus the charactersof dielectrics and
magnetics are totally different and those who try to present electric polarization
and magnetization as two similar phenomena do a big harm.

If'xm < 0, the MEDIUM is called DIAMAGNETIC, if X = 0, the medium is called NON-
MAGNETIC, if X > 0, the medium is called PARAMAGNETIC and if Xq > 0, the medium
is called FERROMAGNETIC.

The magnetic induction B in ferromagnetic materials depends not only on H but al-
so on the "hystory", i.e., on the magnetic intensities which have acted on the mate-
rial before putting it in the field of the magnetic intensity H. The dependence of
B on the "hystorical" H (fig. 3) is called HYSTERESIS.

Let at the intial moment the ferromagnetic material be not magnetized. Thus if

tan™ ! (Initial permeability)

Fig. 3. The hysteresis loop.
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the external magnetic intensity H is zero, the magnetic induction B produced by the
magnetic will be zero. If H will begin to increase positively, B will also begin to
increase positively and the dependence B = f(H) will be presented by the dashed line
which begins from point 0. After coming to some maximum magnetic intensity Hmax’ let
begin to diminish H. When coming at H = 0, the magnetic induction produced by the
magnetic will be Br and is called RESIDUAL (or REMANENT) MAGNETIC INDUCTION. After
changing the direction of the magnetic intensity and letting it increase negatively,
we shall arrive at the intensity --Hc when the magnetic induction produced by the
magnetic will be zero. I-HCI is called COERCIVE MAGNETIC INTENSITY (one says wrong-
ly "COERCIVE FORCE"). After coming to -I-lmElx and returning again to Hmax’ we shall
describe the closed loop in fig. 3 which is called the HYSTERESIS LOOP.

Let me note that there is "hysteresis" also at the polarization of dielectrics.
Magnetics with large residual magnetic induction are called PERMANENT MAGNETS (shor-
tly MAGNETS) and dielectrics with large residual electric displacement are called
ELECTRETS.

In fig. 3 there are shown different kinds of permeabilities defined by the rela-
tion

u = arctan(B/H), (20.9)

noting that in the figure the "arctan" is designated by "tan'l".

It can be shown that the area of the hysteresis loop in fig. 3 is equal to the
energy which is lost in the form of heat for magnetizing, demagnatizing, anti-magne-
tizing, demagnetizing and again magnetizing of unity volume of the magnetic. This
energy is called HYSTERESIS LOSSES. The effect is no more a pure electromagnetic ef-
fect as heat becomes involved.

Let consider now a closed magnetic with length L and cross-section S, whose perme-
ability is wu. If a coil with N turns is wound on it in which current I flows, this
is called a TORUS. The most simple torus is the circular one, with radius R and ra-
dius of the turns r = ¥5/m. For R > r the magnetic intensity in the torus is as in
a very long solenoid (see (18.28)) H = 4nNI/cL and the magnetic induction is B =
4munl/c, where n = N/L is the number of the windings on a unit of length. If not the
whole length of the torus is covered by the N turns but only a certain part AL of it
and u is high enough, the magnetic induction in the iron will be B = 4munl/c, where
now n = N/aL. The iron on which the coil is wound is called CORE, and the iron which
“conducts” the magnetic flux and closes it is called YOKE.

1 introduce the notion MAGNETIC TENSION (official physics calls it "MAGNETOMOVING
FORCE"), U, as folows

U, = (4n/c)NI = (4n/c)nlL = HL = (B/u)L. (20.10)
If u does not remain constant in the whole torus, we shall have
U = i(B/u)dL = ¢(¢/uS)dL = ¢¢dL/yS = R (20.11)
L L

This equation has a form similar to that of Ohm's law (16.5). Here the magnetic
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tension U“1 stays for the electric tension U, the magnetic flux % stays for the ela,-
tric current I and the "magnetic resistance" Rm’ called RELUCTANCE, stays for the
electric resistance R. The analogy between Ohm's law in electricity {16.5) and
"Ohm's law in magnetism" (20.11) is purely formal and has no certain physical back.

gro'un d.

The quantity reciprocal to R,
G, = /R = uS/L r20.12,

is called PERMEANCE. Thus permeability u corresponds to the conductivity v (see

(16.3)).
Let have a slot of small length 1 in the iron ring, and let us assume that the

magnetic flux remains constant along the whole length of the torus, i.e., let us as-

sume that there is no dispersion of magnetic flux in the slot.
Now we shall have for the reluctance, according to the last part of equation

(20.11),

Ro= (L= 1)/uS + 1/S = {L + 1(u-1)}/uS 2 (L + ul)/us. (20.13).

Thus an air slot of length 1 increases the reluctance as an additional iron part

of length L' = pul.

21. THE DIFFERENT KINDS OF ELECTRIC INTENSITY

According to the concepts of official physics, which [ shall call the first con-
cepts,the EFFECTS on charges at rest are called ELECTRIC and the effects on charges
in motion are called MAGNETIC. I also followed these concepts when separating the
terms in the Newton-Lorentz equation (8.5) into two electric terms, presented under
the common name "restricted electric intensity"”, and into two magnetic terms, the
vector magnetic intensity and the scalar magnetic intensity (official physics, of
course, ignores the latter).

However the separation of the effects into electric and magnetic can be done fol-
lowing other second concepts, namely, considering as electric the effects due to the
action of charges at rest and as magnetic those due to the action of charges in mo-
tion. Now only the first term in the Newton-Lorentz equation (8.5) will be called
electric and the other three terms magnetic, although the fourth term, in view of
equation (8.8) can be considered as electric and as magnetic, noting, however, that
to have 3¢/9t # 0, the charges must move.

Both these separations of the effects in electromagnetism into electric and mag-
netic have their positive and negative aspects and the best way is to consider all
effects as common ELECTROMAGNETIC EFFECTS. In these third concepts, however, it is
gonvem‘ent to give to the notion "electric" the pedominance and to try to evade as

much as possible the notion "magnetic".
Following these third concepts, I called the net force acting on a test charge

"global electric intensity". I give to the different parts of this force
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Ecoul = - grads, Etr = - 9A/cdt, E = (v/c)xrotA, E

mot Jhit = - (v/c)divA (21.1)

the names: COULOMB ELECTRIC INTENSITY, TRANSFORMER ELECTRIC INTENSITY, MOTIONAL ELEC-
TRIC INTENSITY and WHITTAKER ELECTRIC INTENSITY.

The transformer electric intensity can have two substantially different aspects:
a) REST-TRANSFORMER ELECTRIC INTENSITY (in case where the wires of the surroun-
ding system are at rest and only the flowing currents change)

Erest-tr = - (1/c)oA/at. (21.2)
b) MOTIONAL-TRANSFORMER ELECTRIC INTENSITY (in case where the currents flowing
in the wires of the surrounding system are constant but the wires move, and the mag-

netic potential becomes a composite function of time through the radius vectors r
connecting the different current elements with the reference point)

i

1 aﬂi{ri(t)} 1 E oA; x, aAi dy, 9R; 9z, , n
E = - = = - +——— - v..grad)A.
mot-tr c,-El at Ci=1 ax at ay at 3z at C z=(‘ arad)h;
(21.3)
where v, = - 3ri/3t is the velocity of the i-th current element of the surrounding

system which generates the magnetic potential Ai at the reference point. The time
derivative of the radius vector r. is taken with a negative sign, as r. points from
the 1-th current element to the reference point. If the surrounding system, i.e.,

the magnet, moves translatory, we shall have v, =V and thus

Eunt-tr = (1/c)(v.grad)A. | (21.4)

The motional-trans former electric intensity and the formula describing it were
discovered by ne(s). although every child must come to this "discovery" following
the elementary mathematical logic. I repeat one more (see Sect. 14) that in electro-
magnetism there are only three discoveries: the law of Coulonmb, Neumann and Newton
(1.e., Newton's law for gravitational energy of two masses leading to the worild
gravitational energy of mass m, Uw’ which when taken with negative sing gives the
time energy of m, eo). All. other electromagnetic “"effects" are simple logical conclu-
sions to which these three laws lead, after introducing the most simple models for
conductors, dielectrics and magnetics.

Why then official physics does not know the motional-transformer electric inten-
sity? The answer is: Because of the introduction in physics of the wrong PRINCIPLE
OF RELATIVITY. Indeed, according to this principle, all physical effects must depend
only on the relative velocities of the bodies. Thus, this principle asserts that if
at a motion of a wire with velocity v respectively to a magnet at rest the induced
in the wire electric intensity is given by the third formula (21.1), then the elec-

tric intensity induced in the wire at rest when the magnet moves with a velocity v
will be

Erelativistic ST Emot = - (1/c)vxrotA. (21.5)

How many papers and books have been written to show that the stupidity (21.5)
must be true!
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Let m present here the experiemt of Kennard!1?) which in my simplified varia-
tion (fig. 4) was labeled by J. Maddox( 15) as "Stefan Marinov's puzzle”. As a matter
of fact, there is no puzzle at all, as Kennard's experiment is a trivial illustra-
tion of the difference between the motional and motional-transformer electric inten-
sities and the "puzzle” is only in the heads of the poor relativists.

I shall present first the description of the puzzle by John Maddox' own words:

. from time to time, in Marinov's copious writings, there are relatively
simple arguments that appear accessible even to those still at high school.
Here is one series of gedanken experiments presented as if it were a Christmas
puzzle (the original intension), with some helpful (or misleading) hints for
its solution.

(13)

The figure (fig. 4) shows a pair of circular conductors arranged as two con-
centric circles. Equal electric currents are circulated in each, but in oppo-
site directions. The simplest way of creating this arrangement is to cut
through the concentric pair at some point and to join the loose ends in pairs
by short engths of straight conductor. An electromotive force applied anywhere
along the conductor will engender a current which must be everywhere uniform.
At the bridged gap, there will be equal currents flowing in opposite direc-
tions, so their influence on the magnetic fields in the concentric gap will be
zero.

The device is thus a means of arranging that there is a uniform magnetic
field in the space between the concentric circles in a direction perpendicular
to their plane (downwards into the plane of the paper when the current in the
circuit flows in the direction indicated). The sensor in the experiment is a
conductor long enough just to bridge the gap between the concentric circles
and mounted on thin insulating support in such a way that it can be made to
slide around the circle. The objective is to measure the voltage across the
sliding conductor, either by a standard voltmeter or by a condenser whose ac-
cumulated charge will be a measure of the voltage in a steady state.

b-
__?.bo

Fig. 4. Kennard's experiment.
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The simplest case is when the sliding conductor is at rest. Then there is
no voltage. Right? Next comes the case in which the sliding conductor moves at
uni form speed around the concentric gap, always pointing along a radius of the
concentric circles. As the slider moves, it will cut through magnetic lines
of force at constant rate, so that there will be a constant voltage across the
ends. The polarity of the slider will depend only on the direction of the
current in the concentric circuit, and not on whether the slider moves clock-
wise or anticlockwise. Right again?

Now come the tricky part, at least so far as Marinov is concerned. What
happens if the sliding conductor is fixed in space, but the undrlying concen-
tric circuit is rotated about its center? Relativity theory naturally predicts
that the voltage across the sliding conductor would be the same as in the first
experiment, and with the same polarity. On the other hand, questions may be
raised about the degree to which the pattern of magnetic forces generated by
the current is dragged around the ring by its rotation. Maybe there is a smal-
ler voltage, but with the same polarity. What, asks Marinov, is the answer?

The second conundrum is superficially sinpler: simply rotate the apparatus
in its own plane, about the center of the concentric circles. (There will be a
small voltage due to Earth's magnetic field, but this may safely be neglected.)
Is there now a voltage, and with what polarity? If the answer to the first
question is "Yes" the answer to the second must be "No", and vice versa. Rea-

ders are invited to make up their minds before reading on.

Marinov's own answers are unambiguous. Vice versa wins the day. When the
underlying concentrc circle is rotated and the slider is kept fixed, there is
no voltage across the movable conductor. But when the whole apparatus is rota-
ted about its centre, the voltage across the now-moving sliding conductor is
identical with that obtained when the slider is moving relative to the concen-

tric circuit.
The implications are evidently important. The null answer to Marinov's first

question implies that relativity has vanished through the window, the affirma-
tive answer to the second implies that an isolated apparatus carrying a circu-
lating current will generate a voltage when rotated, which raises forbidden

questions about absolute space.
Here are my comments:
First about Maddox' language:
1) For “"electric tension" Maddox (and whole official physics) uses the word "vol-
tage". But if following such a trend, we have to call the current "amperage", the

magnetic intensity "teslage", etc.
2) For "driving tension" Maddox (and whole official physics) uses the very bad

word “"electromotive force".

Then about Maddox' concepts: To speak at the end of the XXth century about "MAG-
NETIC FORCE LINES" and to ruminate (as Faraday did) whether these lines will move
when a current wire producing them moves i1s the same thing as at the end of XXth
century to ride a horse on London's Strand. In electromagnetism there are only char-
ges, moving charges (i.e., current elements), distances and a watch on the physi-
cist's left hand. And nothing else!

Finally about three Maddox' obvious errors, the first one being an essential er-
ror and the two other fapsus calamitd:

1) The tension along the slider can be measured only by the help of a condenser
which accumulates the charges generated at its ends and by leading them to an elec-
trometer, as KENNARD did in his EXPERIMENT.(lq). In my quasi-Kennard experiment
(see fig. 5 and Sect. 45) the availability of charges at the ends of the slider was
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indicated electrometrically directly by "“golden leaves". By the help of a “standarc
voltmeter" the difference between the motional and motional-transformer induced elec-
tric tensions cannot be demonstrated, as at the ends of the slider one must put sli-
ding contacts and at motion of the voltmeter with its wires leading to the sliding

contacts a tension will be induced in these wires exactly equal and opposite to the
tension induced in the slider when it moves with the same velocity.

2) Maddox writes that the polarity on the slider will not depend on whether the
slider mves clockwise or anti-clockwise. This is wrong. By changing the sense of
the slider's rotation the polarity of the tension induced in the slider will also
change.

3) Maddox writes that the two concentric current wires generate a "uniform” mag-
netic field. This is not true. The magnetic field is not uniform. It is the stron-
gest near the concentric wires and the weakest along the middle circle between them

Now I shall calculate the effects in Maddox' "puzzle" which is not at all a puz-
2zle but, as already said, a trivial illustration of the third formula (21.1) and
of formula (21.4).

To be able to make these calculations, let us find first the magnetic potential
generated by two currents I flowing in two infinitely long parallel wires separated
by a distance b. In fig. 5 two such wires are presented assuming that their lengths,
d, tend to infinity. If the frame's origin is taken at the center of the rectangle,
the ordinate of the upper wire will be b/2 and of the lower - b/2. The current in

the rectangular loop in fig. 5 is flowing in positive, i.e., anti-clockwise direc-
tion, thus in a direction opposite to the current's direction in fig. 4.

4

Fig. 5. The quasi-Kennard experiment.
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According to formula (18.15) we shall have for the x-component of A generated by
the upper wire at a reference point taken on the y-axis
d/2

] 22,172
Aos - (1/c) [ (672 -y)2 +x81 Y2y = - (217c)n 32 1(b/2 -y) +d /AN 7T ) 6
A -d/2 b/2 -y

the components Ay and Az being equal to zero. We see that for d ~ =« the component
Ax tends to infinity. However the magnetic potential generated by the upper and low-
er currents in fig. 5 is final also for infinitely long wires, namely

2
I/ RN (LY )t e M a1 w2+ ((b/2 +y)? e Fra
X b/2 -y c b/2 + y

21", b/2 -
1 .
= 2o y (21.7)

where the result on the right side is written for d long enough and y can take any
value except b/2 and - b/2.

These two long d-wires can be connected with the short b-wires and so we shall
obtain a rectangular loop with d >> b. As the two b-wires are far enough from the
reference point, their contribution to the magnetic potential can be neglected.

I shall calculate the effects for the rectangular long loop in fig. 5. If the ra-
dius R in fig-4 is large enough, i.e., if R > b, the same effects will be valid
also for the concentric loops in fig. 4.

The magnetic intensity for reference points along the y-axis will be if using
formula (21.7)

B = roth = - (aA /ay)z = —DIbZ > (21.8)
c(b? - 4y?)
and the electric intensity induced along the moving slider will be
A 8vIb 3?
E_ . =vB/c =(B_ /ey = eA (21.9)
mt 2 (b2 - 4y2)

For the electric tension induced along the slider with length b —bo we shall have

b/2-bo/2 (b-bg)/2
Ut -bIZ{b /2( mot)ydY = (4v1/c® )Artanh(2y/b) (bb )72 =
(avl/cf)(1/2)n 1 2200 (bbolV2 (av1/c®)n =50 = (avizcyn(2b/b ), (21.10)
1-2y/b|.(b-by)/2 bo o

where the result on the left is for b > b,.
Meanwhile we shall have for the electric intensity induced in the slider at rest
when the long rectanqular loop in fig. 5 moves with velocity v

£ = (v.grad)A/c = (v/c)3A/3x = 0. (21.11)

mot-tr
When moving both the slider and the rectanoular loop in fig. 5 with a velocity v
the electric intensity 1nduced in the slider will be the sum of the motional (21.9)
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and motional-trans former (21.11) intensities, thus the tension induced will be g1-
ven by formula (21.10). That's the whole "puzzle" of Dr. Maddox and the relativity
blind.

Let me note that the magnetic intensity produced by a very long wire at a dis-
tance r, according to formula (21.8), in which we put b/2 = r, y = 0, will be

B = (1/2)Bd0uble = 2l/cr. (21.12)

single

The electric intensities (21.1) are the kinetic forces of the unit test charge.
They can lead to the motion of the test charge in the conductor, and in such a case
we call them ELECTROMOTIVE FORCES or they can be transferred from the charge on the
metal lattice (ions' lattice) setting the whole conductor in motion, and in Such a
case we call them PONDEROMOTIVE FORCES. A1l four electric intensities (21.1) can
lead to electromotive forces but only Emot and Ewhit can lead to ponderomotive for-
ces. When v is the velocity of the test charge in the conductor, Epgt and Eypniq 9e-
nerate ponderomotive forces, and when v is the velocity of the conductor, Emt and
Ewhit generate electromotive forces. If Ecqy) and E;. have pushed the charges to
the extremities of the conductor and for them there is no more motional freedom,
Ecoul and E,. can also generate ponderomotive forces.

The phenomenon of induction of electric intensity in conductors (and dielectrics)
is called ELECTROMAGNETIC INDUCTION. The electromagnetic induction described by the
third formula (21.1) is called MOTIONAL INDUCTION, by the fourth formula (21.1)
WHITTAKER INDUCTION, by formula (21.7) REST-TRANSFORMER INDUCTION and by formula
(21.3) MOTIONAL-TRANSFORMER INDUCTION. The induction of electric intensity in con-
ductors (and dielectrics) according to the first formula (21.1) was called (see
Sect. 20.1) ELECTROSTATIC INDUCTION.

Now I shall point out at the reason which has not allowed to humanity, during
two centuries of experimental work, to reveal the difference between the motional
and motional-transformer inductions. \

The reason is that for closed loops the induced motional and motional-trans for-
mer electric tensions are equal with opposite signs. Indeed, we have for the ten-
sions induced in a closed loop for the case where loop and magnet will be moved
with a velocity v together in the laboratory

(21.13)

(Umot *Umot-tr) ° E(vxrotA).dr + {{(v.grad)ALdr = grot{vertA + (v.grad)A}.dS = O,

where S is an arbitrary surface spanned over the loop L, and taking into account for
pula (7.10) and the mathematical rule that rot(grad) of any scalar function is equal
to zero, we conclude that the surface integral is identically equal to zero. Thus

we obtain _
Unot = = UYmot-tr- (21.14)

Proceeding from this equation which is not generally valid but only for closed

loops Einstein created the monster called "theory of relativity* (see his 1905-
Paper).
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22. THE POTENTIALS, NOT THE INTENSITIES, DETERMINE THE ELECTROMAGNETIC EFFECTS

The childishly simple theory obtained when proceeding from the axiomatic Coulomb,
Neumann and Newton laws asserts that the electromagnetic effects are determined by
the electric and magnetic potentials. Official physics asserts that the electromag-
netic effects are determined by the electric and magnetic intensities (of course ig-

noring the scalar magnetic intensity).
The intensities are space and time derivatives of the potentials and, of course,

they will also determine the electromignetic effects. But as any derivative carries
less information than the function itself, so the intensities may not be able to ex-
plain all effects which are described in all details by the potentials.

In my theory, if a material system is given, then the electric and magnetic po-
tentials are uniquely defined by the help of the definition equalities (8.1). Thus
the potentials ¢ and A are the primordial quantities which determine the motion of
the test charge. According to official physics, the primordial quantities which de-
termine the motion of the test charge are the restricted electric intensity E and
the vector magnetic intensity B. Thus for official physics any two potentials ¢, A
which, when put in the first two equations (8.6) give the right intensities E, B,
have the whole right to be treated as potentials of the system in consideration.

Let us have two potentials ¢, A which give the right intensities E, B. Let us
take an arbitrary function f(r,t) = f(x,y,z,t) of the radius vector of the reference
point and of time and write two "new" potentials

¢' = ¢ - 3f/at, A' = A + gradf. (22.1)

[f putting ¢' and A' in the first two equations (8.6), we shall obtain two new

intensities
E' = - grad(¢ - 3f/at) - (3/cat)(A + gradf) = - gradd - dA/cat = E,
B' = rot(A + gradf) = rotA + rot(gradf) = rotA = B. (22.2)

It tums thus out that the new intensities are identical with the old ones. And
according to official physics the new potentials have the same right to be conside-
red as potentials of the system in consideration. Official physics calls the trans-
formation (22.1) GAUGE TRANSFORMATION and the function f(r,t) GAUGE TRANSFORMATION

FUNCTION.
So, according to official physics, one can take as a gauge transformation func-

tion the following one
af/cot = ¢, (22.3)

obtaining thus the new electric potential equal to zero in whole space. Taking into
account also the equation of potential connection (8.8), we shall thus have

' =0, divA' = 0. (22.4)

Official physics considers thus as justified to erase the reality of the elec-
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tric and scalar magnetic fields. Monstruous!

For my theory (and for the Divinity) the gauge transformation (22.1) is inadmis-
sible and not the intensities but the potentials determine thoroughly the effects
in electromagnetism.

Now I shall show with simple considerations how the gauge transformation (22.1)
may lead to contradictions with the physical reality.

In Sect. 18 | have calculated A and B of a very long circular solenoid. Now I
shall do this for a very long solenoid with rectangular cross-sectuon.

As the exact calculation is pretty complicated (I have not seen such a calcula-
tion in the literature!), I shall present here a very simple approximate calcula-
tion which also leads to the right result.

Formula (21.7) gives the magnetic potential generated by the rectangular loop
shown in fig. 5 at the assumtion d >> b. Let us now suppose that there are n such
loops on a unit of length along the z-axis going from z = =@« t0 2 = =, As in such a
case there will be ndz turns along the differential length dz, the resultant magne-
tic potential is to be calculated according to the following formula, if we shall

suppose b > |y|, i.e., if we shall suppose that the reference point is near to the
X-axis,

® _ 2 2 1 o0
A = 2 fnilBEY) * 2y /2 =g Jn(1 - =2y - (1 + 2L yingz -
-o  (b/2 +y)? + 2 - bc/4 +2 bc/4 +2
oy 2y g o - 30NY orctan(2z/b)| = - dmnly/c, (22.5)
C.> /4 + 22 ¢ o

where [ neglected y2 with respect to b2/4 and then I presented the logarithm as a
power series neglecting the powers higher than the first.
For the magnetic intensity we obtain

B = rotA = - (3A /ay)Z = (4mnl/c)Z, i.e., i.e., B, =4ml/c. (22.6)

Thus the vector of the magnetic intensity in the rectangular very long solenoid
will have the following Cartesian components

Aect = (-4mly/c, 0,0) = (- yB,, 0, 0). (22.7)

According to formula (18.26), we shall have for A and B in a circular very long
solenoid
Ay = 2™nlp/c, B, = 4ml/c. (22.8)

Thus the magnetic intensities in two very long solenoids with circular and rec-
tangular cross-sections are equal. However the magnetic potentials are not. The mag-
netic potential in the long solenoid with prolongated rectangular cross-section is
given by formula (22.7), while, taking into account that Cartesian components of
the magnetic potential in the circular solenoid are Ax == Asing = - Qy/p.

¢
Ay = A¢cos¢ = A¢x/o. we shall have
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A = (-2anly/c, 2mnlx/c, 0) = (-yB,/2, xB,/2, 0). (22.9)

circ
The transformation from the potential (22.7) to the potential (22.9), or vice ver-
sa is, of course, a gauge transformation. Indeed, choosing the gauge transformation

function in (22.1) in the form f(x,y,z,t) = Bzxy/Z. we obtain the potential (22.9)
i f proceeding from the potential (22.7)

A' = A+ gradf = - yB X + (sz/2)§ + (xB,/2)y = -(¥B,/2)X + (x8,/2)y. (22.10)

Thus, according to official physics, for magnetic potentials in two very long so-
lenoids with circular and rectangular cross-sections (with d > b!) one can take
both quantities (22.7) and (22.9) and all effects will be determined by the magne-
tic intensity Bz given in (22.6) and (22.8) which has the same value in both sole-

noids.
To show that this is not true, let us put an electric charge q at the centers of

both solenoids. If moving this charge with a velocity v.in both solenoids first
along the x-axis and then along the y-axis, the acting force, of course, will be the

ame
a) motion of the charge along the x-axis

f=qE , * (q/c)viszi = - (quz/cjf = - (4nqvnl/c2)_9. (22.11)
b) motion of the charge along the y-axis
f=qE . = (a/c)w=B,Z = (qwB,/c)X = (4nqvn1/c2)£. (22.12)

However if moving the solenoids with a velocity v, leaving the charge at rest,

the acting force will be
a) motion of the solenoid with circular cross-section along the x-axis

f = (a/c)(vR.grad)(-yB_R/2 + xB.§/2) = (qvB,/2c)§ = (2nqwn1/c?)F, (22.13)
a') mtion of the solenoid with rectangular cross-section along the x-axis
f = (q/c)(vi.grad)(-yazi) = 0, (22.14)
b) motion of the solenoid with circular cross-section along the y-axis
f = (Q/c)(q9.grad)(-sz§/2 + sz?/Z) = - (quz/2c)§ = - (2nqvnI/c2)§, (22.15)
b') motion of the solenoid with the rectangular cross-section along the y-axis
f = (a/c)(W.grad)(-yB ) = - (qwB,/c)X = - (4nqwnl/c®)R. (22.16)

Thus the motion of the test charge in these two solenoid, at motion of the sole-
noids, will be completely different, although the magnetic intensities in the sole-

noids remin the same.
1 should like to note that when calculating the integral (22.5) I integrated for

2 in the limits for -=to =, while when calculating the integral (18.23) I integra-
ted for z in the limits from 0 to «. Easily can be seen that if in (18.23) I had al-

so calculated in the limits from -= to =, 3 value for A two times than the right
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one should be obtained. I could not found an explanation for this discrepancy, no-
ting that when B. B. Dasqgupta (Am. J. Phys., 52, 258, (1984)) calculates directly
the magnetic intensity in a long circular solenoid he integrates for z in the 1i-
mits from - = to « and obtains the right result. Scott(lz) (p.322) makes the cal-
culation through the magnetic potential, exactly as I do; he takes z in the limits
from - © to = but the result which he then writes is two times smaller than this
one which is to be obtained at a right mathematical calculation. I turn the atten-
tion of the mathematicians to this strange discrepancy.

23. ABSOLUTE AND RELATIVE NEWTON-LORENTZ EQUATIONS

The Newton-Lorentz equation (8.4) is written in a frame attached to absolute
space and I call it the ABSOLUTE NEWTON-LORENTZ EQUATION.

Let us now find the form of the Newton-Lorentz equation in a laboratory (frame)
moving with a velocity V in absolute space, where it will be called the RELATIVE
NEWTON-LORENTZ EQUATION, begging once more the reader to pay attention to the dif-
ference between the Lorentz and Marinov invariances considered in Sect. 1. Thus I
shall look for the Newton-Lorentz equation‘ggl forthe system considered first with
mass center at rest in absolute space and then with its mass center moving with ve-
‘Tocity VY in absolute space but if the observer would move with velocity V¥ in abso-
lute space and the system considered remins always with mass center at rest in ab-
solute space.

Let the velocities of the test charge and of the charges of the system in consi-
deration by v and vy with respect to absolute space and v', v{ with respect to the
laboratory which moves with the velocity V in absolute space.

As the velocity of the moving laboratory can be not high (the velocity of a la-
boratory attached to the Earth is about 300 km/sec!), it is enough to use the Gali-
lean formulas for the addition of velocites

v=v'+YV, vy = v+ Y, (23.1)

which can be obtained when differentiating formula (3.1) with respect to time (of
course written in three dimensions), and not the Marinov formulas for addition of
velocities which can be obtained (3:5) at the differentiation of formula (3.5).

Let me note that in Ref. 5 | consider the effects which can be observed if the
mass center of the system in consideration (usually a single particle) is conside-
red first at rest in absolute space and then moving with a velocity v in absolute
space. In this case the velocity v can be high (even approaching ¢) and the Marinov
or the Lorentz transformation formulas are to be used (I repeat - see Sect. 3 - when
considered from an absolute point of view these two transformations lead to identi-
cal results).

Thus using (23.1), we shall have for the argument of the gradient in formula

(8.3), having in mind the definition formulas for the potentials (8.1),
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' Yy v v' +¥
: =¢'(1 - Y ) - A, (23.2)
l‘i C cri c2 C2 C

where &'

¢ is the relative electric potential which is equal to the absolute elec-
tric potential, as the electric potential is not velocity dependent, A' = Jaqjv{/cry

is the relative magnetic potential, and the summations are taken over the n charges
of the system in consideration.

The total time derivatives of the absolute and relative magnetic potentials must
be equal

dA/dt = dA'/dt, (23.3)
because dA/dt depends only on the changes (for a time dt) of the absolute velocities

of the charges and dAYdt depends on changes of their relative velocities and these
changes are equal, and on the changes of the distances between q; and q which are
equal, too.

Putting (23.2) and (23.3) into (8.3), we shall have, remembering the deduction
of formula (7.11),

d m(v + V) - 13, .49 Q.
2
cz C2 C C

where all laboratory quantities in (23.4) and further in this section are written
without primes.

Comparing formulas (23.4) and (8.4), we see that their"potential" (right) parts

differ with the last four terms in equation {23.4). The electric absolute effects
are proportional to V/c and can be neglected with respect to the relative (labora-
tory) electric effects, however the magnetic absolute effects are not only compara-
ble with the relative magnetic effects but, at V > v, are even bigger.

To demonstrate the validity and effectivity of the relative Newton-Lorentz equa-
tion (23.4), let us consider again the rectangular current loop in fig. 5. Let us
suppose that the loop moves with a velocity ¥V in absolute space and let us attach
to it the moving frame K'.

The test charge (the vertical wire in fig. 5) is first at rest in the laboratory,
i.e., at rest with respect to the loop, and then it is moved with the laboratory ve-
locity v. The electric intensity induced in the wire as a result of this motion,
which can be observed by the help of a voltmeter that is all the time at rest in the
laboratory, can be calculated from the following two equations

cE = VxrotA + (V.grad)A, cE' = vxrotA + VxrotA + (V.grad)A, (23.5)

and for the difference E' - E we obtain

E'-E= Emot = (v/c)xrotA, (23.6)
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Let us now suppose that the test charge (the vertical wire in fig. 5) is always
at rest in the laboratory and the loop originating the magnetic potential first is
at rest in the laboratory and then is moved with velocity v. The electric intensity
induced in the wire as a result of this motion cannot be observed by the help of a
voltmeter but only by observing the change of the charges at the extremities of the
vertical wire in fig. 5 and can be calculated as follows: The initial induced elec-
tric intensity E will be the same as in (23.5). When the loop is set in motion with
velocity v, we have to write the relative Newton-Lorentz equation in a frame K" mo-
ving with a velocity V +v in absolute space, as only in this frame the originated
laboratory magnetic potential will be as at the initial moment. As in this frame
the test charge will have a velocity - v, we obtain

CE" = - vxrotA + (v +V)xrotA + (v +V).grad A, (23.7)
and for the difference E" - E we obtain

E" - E=E = (v.grad)A/c. (23.8)

mot-tr

That's the whole "secret" of the space-time absoluteness which neither Lorentz
and Poincare nor Einstein and tutti{ quanti could grasp. A problem to be solved by
children!

If the loop and the test charge (the vertical wire in fig. 5) are first at rest
in the laboratory and then move together with velocity v, instead of equation (23.7),
we have to write

cE"' = (v + V)xrotA + {(v + V).grad]A, (23.9)

and for the difference E"' - E we obtain

E"' - E=E ¢+ E = vxrotA/c + (v.grad)A/c. (23.10)

mo mot-tr
The different effects described by formulas (23.6), (23.8) and (23.10) were ob-
served first by Faraday on his famous disk(lﬁ) with closed loops by using sliding
contacts and by Kennard(la) with open loops. By transforming Kennard's rotational
experiment to an inertial experiment, called by me the quasi-Kennard experiment, I
succeeded (see Sect. 45) to measure the Earth's absolute velocity by using the
first formula (23.5).

24. WHITTAKER'S AND NICOLAEV'S FORMULAS

24.1. WHITTAKER'S FORMULA.
Let us consider the Newton-Lorentz equation (8.4) and assume grad® = 0, 3A/3t = 0
and that the magnetic potential A is generated by a single current element ['dr'

A = I'dr'/cr. (24.1)

Puttung all this in (8.4) and presenting qv as a current element Idr, we shall
obtain for the kinetic force of the current element Idr (or for the potential force
with which the current element I'dr' acts on the current element Idr) the following
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expression, where r ponts from dr' to dr,

Jf = (II'/cz)ldrxrot(dr'/r) - drdiv(dr'/r)} = (11°/¢%r3) (drx(dr'xr)+ dr(dr'.r)} =

(11'/¢r3)((r.dr)dr' - (dr.dr')r + (r.dr')dr). (24.2)

I call (24.2) the WHITTAKER FORMULA, as allegedly Whittaker(1’) was the first

one who has written it on a piece of paper without presenting some motivations. I
write Whittaker's formula also in another form in which the places of the different
term are exchanged

df = (11'/¢2r3((r.dr')dr + (r.dr)dr' - (dr.dr')r). (24.3)

The GRASSMANN FORMULA(IB). which can be obtained exactly in the same way from the
LORENTZ EQUATION, what is equation (8.4) without the last term, is (24.2) without
the last term, i.e.,

df = (11'/¢Ero){(r.dr)dr' - (dr.dr')r). (24.4)

The AMPERE FORMULA{1®) has the form '

df = (II'/czrs){3(r.dr)(r.dr') - 2(dr.dr')r2}r. (24.5)

Ampere's formula (24.5) shows that the potential forces with which two current
elements act one on another are equal, oppositely directed, and lie on the line joi-
ning the two elements. Thus Ampere's formula preserves Newton's third law (at the

deduction of his formula Anpere assumed that Newton's third law must be valid at
the interaction of two current elements).

Whittaker's formula (24.3) shows that the potential forces with which two current
elements act one on another are equal, oppositely directed, but may not lie on the
line joining the elements. Thus Whittaker's formula violates Newton's third law.

Grassmann's formula (24.4) shows that the potential forces with which two cur-
rent elements act one on another may be neither equal nor oppositely directed. This
formula drastically violates Newton's third law and all professors in the world are

caught by a panic fear when they have to teach it to the students. For this reason,

although being the fundamental formula in official magnetism, it can be seen in on-
ly one of ten textbooks.

For the force with which a closed current loop L' acts on another closed current
loop L all three formulas lead to the same result

f=- (II'ICZ){{'(dr.dr'/ra)r. (24.6)

which preserves Newton's third law. The integration of formula (24.3) can easily be

carried out as r.dr/r3 = - d(1/r) and r.dr'/r3 = d(1/r) are total differentials and
at the integratiin along the closed loops L and L', respectively, give zeros.
On the same grounds one sees that Grassmann's formula also leads to formula (24.6).
The conclusion that Ampere's formula also leads to formula (24.6) is based on a
theorem demonstrated by Lyness(zo) that the force with which a closed current loop

acts on a current element is the same according to Ampere's and Grassmann's formulas.
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Let me emphasize that according to formula (24.6) the forces with which two cur
rent loops act one on another are equal and oppositely directed. Thus for an isola:
ted system consisting of two current loops the momentum conservation law will be
conserved. However formula (24.6) does not say whether the torques with which two
current loops act one on another will be equal and oppositely directed, thus it
does not say whether for an isolated system consisting of two current loops also

the angular momentum conservation law will be conserved.

I could not prove this second theorem and to the best of my knowledge there is
no such a theorem in the literature (of course when proceeding from Grassmann's for-
mula, as Whittaker's formuba is practically unknown).

This aspect for the interaction of the closed current loops remains for me open.
As the reader will see 1in Sects. 50 and 56, I tried to construct machines which
had to violate the angular momentum conservation law at the interaction of closed
loops but without success and my intuition says that at the interaction of closed
loops the angular momentum conéervation law cannot be violated.

As shown in Sect. 63, I succeeded to violate the angular momentum conservation

law only by constructing a machine with non-closed current loops.

Both Grassmann's and Ampere's formulas are wrong (see Sect. 26, 57, 58, 63) and
Whittaker's formula is to be consdiered as the right one. I shall show, however, in
Sect. 24.2 that certain theoretical considerations require the introduction of a
certain change in Whittaker's formula which thus obtains a s1igtly di fferent mathema-
tical form, called by me the NICOLAEV FORMULA. It is Nicolaev's formula which is
confirmed by the experiments (see Sects. 57 -60).

For the force with which a closed current loop L' acts on a current element Idr

of the loop L we obtain from (24.3), taking again into account that r.dr'/r3 = d( r)
is a total differential,

of = (II'/cz){' drxrot(dr'/r) = (Idr/c)>t{' rot(I'dr'/cr) = (Idr/c)xB. (24.7)

Thus the Whittaker scalar magnetic intensity produced by a closed current loop is
zero. For this reason during two centuries of experimental work humanity could not
reveal the existence of the scalar magnetic field.

However, as it will be shown in Sect. 24.2, the Nicolaev scalar magnetic inten-
sity produced by a closed current loop may not be zero and one has to wonder that
after two centuries of experimental work Nicolaev was, as a matter of fact, the

first one who has observed it in childishly simple experiments.

Before presenting Nicolaev's formula, let me show that if the current elements
Idr and I'dr' are coplanar, then their Whittaker forces of interaction depend only
on the distance between the elements but not on the angles defining their mutual
positions. Indeed, according to formula (24.3), omitting the factor (lI'/czrz) and
denoting by n = r/r the unit vector pointing from dr' to dr, we shall have for the
square of the magnitude of the force df with which I'dr' acts on ldr, taking into
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taking into account that the angle between n and drxdr' is equal to n/2,
(df)2 = {(n.dr')dr + (n.dr)dr' - (dr.dr')n}? = ((n.dr')dr - (n.dr)dr'}2 + (dr.dr')? -

{nx(drxdr')}2 + (dr.dr')2 = drzdr'zsinza + drzdr'zcoszu = drzdr‘z. (24.8)

where a is the angle between dr and dr'.

24.2. NICOLAEV'S FORMULA.

Let us consider two parallel current elements Idr and I'dr' lying on the y-axis
and pointing in parallel to the x-axis whose radius vectors are, respectively,0 and
yy, where r = - yy is the vector distance pointing from the current element dr' to
the current element dr. The force with which I'dr' acts on ldr, according to Whitta-
ker's formula (24.3).will be

df = - (11'/cr3)drdr'r = (11'drdr'/cly?)s (24.9)

and will point towards dr', thus Idr will be attracted by I'dr'. The current ele-

ment Idr will act on the current element ['dr' with the same and oppositely direc-
ted attractive force.

At the mutual attraction of Idr and I'dr', their magnetic energy, which is a ne-
gative quantity, will decrease (its absolute value will increase) and the loss of

magnetic energy will be equal to the gain of mechanical energy, as the kinetic ener-
gies of the elements will increase.

Let us now suppose that the same current elements lie on the x-axis pointing
again along the x-axis and their radius vectors are, respectively, 0 and x%, where

r=- xX is the vector distance pointing from dr' to dr. The force with which I'dr'
acts on Idr, according to Whittaker's formula (24.3), will be

df = (11'/7cCr3)drdr'r = - (11'drdr'/c2x8)& (24.10)

and will point towards dr, thus Idr will be repulsed by I'dr'. The current element

Idr will act on the current element [I'dr' with the same and oppositely directed re-
pulsive force.

At the mutual repulsion of Idr and I'dr', their magnetic energy, which is a ne-
gative quantity, will increase (its absolute value will decrease) , but, on the
other hand, also the kinetic energies of the two current elements, due to their re-
pulsive forces, will increase. This is a patent violation of the energy conserva-
tion law. Thus something is wrong with Whittaker's formula.

There is also another delicate point. We cannot imagine how current elements may
move along the current wire. If we have an elastic wire which we can extand mecha-
nically, there will be motion of the line elements, but from an electromagnetic

point of view, at such an extension, the electromagnetic system remains exactly the
same and there is no motion of the current elements.

Proceeding from these speculations, 1 decided to write Whittaker's term in Whit-
taker's formula, i.e., the last term in formula (24.2) or the first term in formula
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(24.3), in the following form

] 2 [] 2
(r.dr')(1 - (dréd',% )dr = (r-dr')(d';dr L gr (24.11;
drcdr drcdr’

and- I assumed ad hoc that the right formula describing the interaction between two
current elements is not Whittaker's formula (24.3) but the following one

df = (11'/c2r3){(r.dr' )(drxdr' \2dp/drldr e + (r.dp)dr' - (dr.dr')r). (28.12)

Now the Newton-Lorentz equation is to be written not in the form (8.5) but in the

following form
Eglop = = 9rade - BA/CAt + (v/c)xroth - (v/c){div[dA(vxdh)2/vednd), (24.13)

where the integral is to be taken over all charges (current elements) any of whom
generates the elementary magnetic potential dA.
And the scalar magnetic intensity will be presented not in the form (8.6) but in

the folowing form
S = - divfdA(vxdA)Z/ P, (24.14)

i.e., S will depend not only on the electric charges (and their velocities) of the
surrounding system and on their distances to the test charge, but also on the direc-
tion of motion of the test charge. Thus the scalar magnetic intensity of a given
system acting on two test charges with different directions of motion are not equal.

I call formula (24.12) NICOLAEV'S FORMULA and equation (24.13) the NEWTON-LORENTZ
EQUATION IN ITS NICOLAEV'S FORM. Equation (8.5) will be then called the NEWTON-LO-
RENTZ EQUATION IN ITS WHITTAKER'S FORM. And now the Whittaker electric intensity
(21.1) is to be substituted by the NICOLAEV ELECTRIC INTENSITY

= - (v/C)diVIdA(v“dA)Z/vzdﬁz. (24.15)

Em'c

where the integral is taken over the surrounding system, every current element of
which generates the elementary magnetic potential dA.

Here I have to note that the equation of potential connection (8.8) preserves
its validity, but we can no more replace Nicolaev's equation (24.13) by equation
(8.9), so that the calculation of the global electric intensity is to be done pro-
ceeding only from Nicolaev's equation (24.13).

The reader has seen in Sect. 7 that the introduction of the Whittaker's term in
equation (7.9), i.e., the middle term on the right side of equation (7.9), was not
sufficiently lawful from a rigorous mathematical point of view. And now | make ano-
ther completely ad hoc deformation of this formula. Thus the conclusion is to be
done that the Divinity, when constructing the theoretical basis of electromagnetism,
proceeding from the axiomatical Coulomb, Neumann and Newton laws, and when seeing
that the theory leads to some unpleasant contradictions, trampling with both feet
on the rigorous mathematical logic, introduced some "hocus pocus" tricks which no

earthly scientist would allow himsel f to do.
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What can 1 do, dear reader? You see, the Divinity is not perfect: eananre div Oy,

26¢. And I am only his prophet.

To a certain degree I can accept the introduction of the second term on the right
side of equation (7.9) as a correct mathematical path (my friend Prof. U. Bartocci
insists that the introduction of this term is inadmissible from a rigorous mathema.
tical point of view). Indeed "physical mathematics" permits certain "frivolities"
but the introduction of "Nicolaev's correction" in the Whittaker's term is a com-
plete mathematical fiasco. If Nicolaev's formula is the right one and the Divinity
was perfect, He had to arrive at this formula by logical mathematical steps.

When one introduces similar logical acrobatics in the edifice of electromagne-
tism, one cannot more be sure whether the fundamental axioms will preserve their
absolute validity. And if on our Earth there are clever children recognizing the
Mephistophelian mathematical manipulations of the Divinity, they will be able to
construct machines violating the most divine of all divine laws - the law of energy
conservation (see Sect. 60).

I must, of course, declare that I am not sure whether formula (24.12) introduceg
by me is the right one. The way to establish whether it is the right one is the fo)-
lowing: The effects predicted by Nicolaev's formula for all known fundamental expe-
riments are to be calculated on a computer. [f always the formula will give the
right prediction, it is to be accepted as right until the day when somebody will
show that the right formula is another one.

I called formula (24.12) Nicolaev's formula, as the Russian physicist of Tomsk
Genadi- Nicolaev, whom I met at the space-time conference in Saint Petersburg in
1391, has done many experiments (see Sect. 58) showing that a formula of such a
kind must be the right one.

It is possible, of course, that the Divinity has not changed ad hoc the Whitta-
ker term into the Nicolaev term. Maybe the Divinity writes the space-time energy of
two electric charges 9ys 9, moving with velocities Vis Vo not in the Neumann's form
(2.14) but in the following form

W= = (a,0p¥, Yo/ )V pxr) (vxr ) vy vy, (24.16)

or in the form
W= - (qlqzvl.vzlczra){(v1 -vz)xr}Z/(vl -vz)z. (24.17)

Now, perhaps, the Divinity will come to Nicolaev's formula on a rigorous mathe-
matical way. I leave to the mathematicians the honour to prove this hypothesis, but
I must declare that the form (24.16) is complicated, unesthetic, and if the Divinity
is a Divinity He would not choose such a ghastly expression in His axiomatics.

In the next three sections I shall make calculations of the forces acting between the
current wires in some simple but fundamental circuits. As pretty many experiments
have shown that Grassmann's and Anmpere's formulas are wrong (see Chapter VI), the
formulas which still remain competitive are the Whittaker and Nicolaev formulas.
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Thus the calculation of the forces of interaction between current wires will be done
when proceeding from Whittaker's and Nicolaev's formulas. In certain fundamnetal
cases only, in order to reveal the differences, calculations also according to
Grassmann's and Ampere's formulas will be done.

25. THE PROPULSIVE AMPERE BRIDGE (PAB)

The calculation of the magnetic force with which a closed current loop acts on
a current element or on another open or closed loop is a simple calculation problem.
However when we have to calculate the magnetic force with which a current loop acts
on some of its current elements or a part of a current loop acts on other its part,
inconveniences may appear, as the integrals may contain singularities. In such ca-
ses we have to make use of certain calculation tricks to be able to evaluate the
acting forces. _

As a first example, I shall calculate the force with which the current in one
half of a circle of radius R and wire's radius r acts on the currenr in the other
half. This force can be measured if at the points where the two half-circles make
contact sliding contacts will be put.

If we shall try to use Whittaker's formula (24.3) or Nicolaev's formula (24.12),
taking as L' the one half of the circle ans as L the other half, we shall obtain
an integral containing singularities, so that we must search for another way to
solve the problem.

According to formulas (18.20) and (18.9), the magnetic enerqgy of this circle
when current 1 flows in it will be

W= - Znl18R¥ o, (25.1)

At an increase of the radius with dR, the magnetic energy will increase by dW
and the magnitude of the force acting on an element dro of the circuit will be

df = (dr,/2nR)(dW/dR)= 3ndr, I2/2/2c2/FR. (25.2)

This force is perpendicular to dr, and obviously directed outside of the circle.
Thus if the circular wire is done of elastic material, it will expand delivering
mechanical energy and decreasing its magnetic energy.

To obtain the net force acting on one half of the circle, we have to write in
(25.2) drg = Rd and to take the projection of the force acting on dr, along the
central radius of the half circle. Taking then into account that in a half circle
there are two fourth circles, we shall have for the net force

n/2 n/2 2o, :
f=2(dfsing =2 | DLRAM B . (5 ny2mr.  (26.3)
0 o 2/2¢“/rR

Thus the force pushing any of the two half-circles is proportional to the square
root of R/r.

When the one half-circle is fixed to the laboratory and the other has sliding
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contacts and is free to move, we call it CIRCULAR PROPULSIVE AMPERE BRIDGE. Of
course, when the half circle has moved a little, the circuit is no more circular
and the pushing force may change.

In fig. 6 the HALF-CIRCULAR PROPULSIVE AMPERE BRIDGE is shown. The half circle
is called SHOULDER of the bridge and the vertical wires are called ARMS of the
bridge. With the notations given in fig. 6 I have ca]culated21 the force pushing
the half circle upwards when there are sliding contacts at the tops of the arms by
using Whittaker's formula (24.3). The obtained integral which, of course, has sin-
gularities is given in Ref. 21. I could not find a way to evaluate the force pushing
the half-circular Ampere bridge but it surely must be near (if not equal) to the
force (25.3).

The classical half circular PROPULSIVE AMPERE BRIDGE (PAB) experiment was done
by Ampere in 1823 and is presented in fig. 7. The difference between the bridges in
figs. 6 and 7 is that in the former the bridge is in the plane of the arms, while
in the latter it is perpendicular to the plane of the arms. The pushing force acting
on these two bridges surely must be the same.

Ampere filled the troughs in fig. 7 with mercury, so that excellent sliding con-
tacts have been realized. Tait exchanged the copper bridge of Ampere by a glass tube
filled with mercury to show that the effect is magnetic and not due to some surface
forces at the contact mercury-copper.

Instead of the half-circle in figs. 6 and 7 one can put a shoulder with a linear

Fig. 6. Half-circular propulsive Anpere bridge.



Fig. 7. The classical propulsive Ampere bridge.

form or with a N-form.
The arms of the Ampere bridge can be done very long (theoretically one can assume

them infinitely long) and the sliding contacts can be put at any two points at equal
distances from the shoulder, so that the upper parts of the arms will be propulsive
and lower stationary.

According to Nicolaev's formula, as there are no forces between colinear currents,
with the increase of the propulsive arms the pushing force in the half-circular Am
pere bridge must diminish. As far as I know, measurements for establishing the exis-
tence (or non-existence) of such an effect have not been done.

On the other hand, the change in the magnetic energy of the whole circuit of the
Ampere bridge does not depend on the fact at which points of the arms the sliding
contacts are taken and thus, for a definite circuit, the pushing force cannot depend
on the relation between the propulsive and stationary arms. Here one has to take al-
so into account that when increasing the length of the propulsive arms a pushing
force acting on these propulsive arms appears generated by the current in the "oppo-

site" shoulder.

26. ACTION OF RECTANGULAR CURRENT ON A PART OF IT

26.1. CALCULATION WITH WHITTAKER'S FORMULA.

Now I shall calculate the longitudinal magnetic force acting on the current wire
BC in the rectangular circuit ODEF in fig. 8. It was claimed by Nicolaev(zl) that
there is a longitudinal force acting on the wire BC and that he has observed it. Now
I shall show that, according to Whittaker's formula the net longitudinal force acting
on the current BC is null.

The wire BC can slide at the contacts B and S and has the length L. The action of
the currents between points A and B and between points C and D on the current in the
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wire BC is entirely symmetric and opposite, so that the force acting on BC will be
determined by the action of the currents in the wires OA,with length D, DE and FO,
with lengths H, and EF, with length D +L +2a.

First, for more simple calculation, I shall assume that D and H are very long,
so that the action of the currents EF and FO can be neglected. Whittaker's formula

(24.3) gives for the x-component of the force (equal to the total force) with which

the current OA acts on the current BC, by denoting dr = dx, dr' = dx', r = x +a +x',

where x' = 0 at point A and x = 0 at point B (the last two assumptions lead to more
simple limits in the integrals),

C A L L
(F3), = (12/¢2)f [arar'/e? = (17 [dx Jdx'/(x' +a +x)% = (1%/c)fdx/ (x +a) =
B O 0o O 0
(127¢2)In(1 + L/a). (26.1)

For the x-component of the force with which the current DE acts on the current BC
we obtain, denoting dr = dx, dr' = dy, r = {(x.-l-a)2 + _yz]l/2 and taking x = 0 at
point C CE

L
(fog)x = (lzlcz)é [(r.drt)dr/ed = - (127¢)[dx] ydy/{(xa)? +y2} 2 -
D 0 O

L
(181 fdx (x+a) = - (1272)(1 + L/a). (26.2)
0

Comparing formulas (26.1) and (26.2), we see that according to Whittaker's for-
mula there is no force acting on the wire BC.

Formulas (26.1) and (26.2) show that, if x' = y, the current elements along the
longitudinal wire OA which are near to point A act on the current elements along
the wire BC with larger forces than the current elements along the transverse wire
DE which are near to point D (put, for example, x' = y = 0). When the distances
x' = y become larger and larger the first forces diminish more rapidly than the se-
cond forces, for certain x' = Yo © b they become equal and then the first forces

0
become less than the second ones. By equalizing the elementary forces in (26.1) and

(26.2) and by putting there xé =Y, = b, we obtain

1/(b +a +x)% = b/{(x+a)? + b2)¥/2, (26.3)
from where we can find b as a function of a and x.

Let us now find the net longitudinal force acting on the current BC when the ac-
tion of the currents in EF and FO cannot be neglected. The integration will be more
complicated but in the same lines as in the above two formulas; remenbering that

[(1+ xz)'llzdx = Arsinhx

nix + (1+:2)Y2y, (26.4)
we shall have:

The x-component of the force with which the current OA acts on the current BC will
be L D

2, 2 — 2 .2, 2. (Dra)(L
(Fop), = (1%/c )(j;dx E()dx J(x' +a +x)° = (1%/c )1n(a(gz|(_+;“;). (26.5)
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The x-component of the force with which the current DE acts on the current B(
will be

L W 2, 2,172
(Fop), = (127¢%)fax fydy/((xsa)? +y233/2 (12/c2)indkL +a + 4 L2l ] (265
| o © (L+a){a + (H¢ +a2)1/2)

The x-component of the force with which the current FO acts on the current BC
can be found directly from the result (26.6) taking it with negative sign and ex-

changing a for D+a

(feg)y - (Izlcz)]n(mﬂ)[o va s (2 e ()2 ) V2] |
(D+a)[D + L + a + {HC +(D+L+a)2) 1/ 2]

(26.7)

The x-component of the force with which the current EF acts on the current BC
will be, if taking x' = 0 at point F and dividing the integral on x' into two inte-

grals, as for x' < D+at+x the x-component of the force is negative and for x' > Dea+x
positive,

ey oIk DR (paixtyax? A T PO ]
(Fepdy = = 7 Jax R IR R 2 2032
c“ o o {(D+a+x-x')c +H¢} c¢ o Dra+x {(x'-D-a-x)¢ +H¢)

(1%/c2ymiat (W +a2)Y2[0 + L+ 2 + (08 + (0+142)8) V2 :
[D0+3+ (W + ()3 V2L +ar (H + (La)l) V2]

(26.8)

The net longitudinal force acting on the wire BC will be the sum of the forces

dr' E
F l - T
dr'
‘dr'
H
)
Y
X
— d
A B C D
=
D a L a

Fig. 8. Rectangular current loop acting on a part of it.



