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(26.5), (26.6), (26.7) and (26.8) and it is equal to zero 

(foady * (Fpe), * (fro)y + (Fgp), = (127 1 = 0. (26.9) 

26.2 CALCULATION WITH NICOLAEV'S FORMULA. 

To obtain the prediction of Nicolaev's formula for the force with which the cur- 

rent in the open loop DEFOA acts on the current in the straight wire BC, at the as- 

sumption that the wires OA and DE are very long, we have to put in (26.1) (fOA)x =0 

and the force which will remain to act on the wire BC will be only the force 

(fDE)x given by formula (26.2). Thus the wire BC will move to the left, as Nicola- 

ev first has observed (see Sect. 58.4). I repeated Nicolaev's experiment in a very 

impressive variation where a continuous rotation could be observed (see Sect. 59). 

26.3. CALCULATION WITH GRASSMANN'S FORMULA. 

As according to Grassmann's formula (24.4) the forces acting on a current ele- 

ment must be always perpendicular to the latter, no longitudinal force can act on 

the current wire BC. 

26.4. CALCULATION WITH AMPERE'S FORMULA. 

Here also as above the force acting on BC will be determined by the action of 

the currents in the wires OA and DE. Ampere's formula (24.5) gives for the x-compo- 

nent of the force (equal to the total force) with which the current in OA acts on 

the current in BC, by denoting dr = dx, dr' = dx', r = x' + x, 

CA L e L 

(foady = (12/C2)£ g;dr‘dr‘/r2 = (lzlcz)jdx Jdx'/(x' +a + x)2 = (Izlcz) dx/(x +a) = 
0o o ) 

(127 (1 + va). (26.10) 

The forces with which the current elements along the wire DE act on the current 

elements along the wire BC are directed along the vector distance r. We have to con- 

sider only the components parallel to BC. The x-component of the force dfpp with 

which the current element |'dr' along the wire DE acts on the current element Idr 

along the wire BC will be obtained by multiplying dfpp by -dr/dr, and denoting 

dr = dx, dr' =dy, r = {(X+a)2 + yz}l’z, so that for the net force we obtain 

1 3(r.dr)(r.dr') r.(-dr) _ _ ,,2,2 2 y dy _ 
f = = I 3 d = (oehx =z [ 5% ar (/e 3(xra)"dx | ((#a)2 + y2)512 

L 
- (&Y fax(x+a) = - (1878 In(1 + L/a). (26.11) 

[0} 

Comparing formulas (26.10) and (26.11), we see that according to Ampere's formula 

there is no force acting on the wire BC. 

Thus the only formula which predicts motion of the wire BC in the rectangular 

loop ODEF remains Nicolaev's formula.
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27. INTERACTION BETWEEN CIRCULAR, RADIAL AND AXIAL CURRENTS 

It is highly important to know the forces of interaction between a circular cur- 

rent, on one side, and radial and axial currents, on the other side. To the best of 

my knowledge, nobody has calculated these forces, even with the wrong Grassmenn and 

Ampere formulas. 

Let us consider the most simple circuit consisting of a circular current with ra- 

dius R and a rectangular current acde perpendicular to it with its corner at the 

center of the circular current (fig. 9). This case is presented also in fig. 10 

where two sliding contacts are put, so that one can observe the appearing forces., 

as done by Sigalov21 (I call the experiment shown in fig. 10 the FIRST SIGALOV'S 

EXPERIMENT). In the single circuit of fig. 10 the current is I, in the two circuits 

of fig. 9 the currents can be different, I and I'. 

1 shall calculate the torques (moment of forces) about the axis ac (the z-axis) 

appearing because of the action: 

1. of the internal radial current on the circular current, 

2. of the circular current on the internal radial current, 

3. of the external radial current on the circular current, 

4. of the circular current on the external radial current, 

5. of the axial current on the circular current. 

As in fig. 9 there are no colinear current elements, both Whittaker's and Nicola- 

ev's formulas will lead to the same or to very similar results. I shall make all cal- 

culations in this section according to Whittaker's formula. 

For brevity, in all formulas of this section the factor II'/c2 will be omitted. 

Fig. 9. Rectangular and circular circuits.
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27.1. ACTION OF THE INTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT. 

The unit vector along the x-axis is denoted by X, the unit vector along the polar 

radius is denoted by p, the unit vector which is perpendicular to the polar radius 

and corresponds to the polar angle ¢ is denoted by é, and the unit vector along the 

z-axis is denoted by Z. The circular and internal radial currents are shown in fig. 

11. 

The elementary moment of force about the z-axis appearing as a result of the ac- 

tion of the radial current element dr' on the circular current element dr will be 

dM = Rpxdf, (27.1) 

so that by substituting (24.3) into (27.1) we obtain 

M = (R/rd)psicosy (-X) + cosw'$ - sina(r/r))drdr'. (27.2) 
As 

r/r = singp + cosy$, dr = Rdg, dr' = dx, pxX = - sing2, pxé =2, (27.3) 

we obtain 2 2 R 
dM = (R®/r%)cosy'dx doz. (27.4) 

We have from fig. 11 

siny' = Rsing/r, r2 = x2 - 2xRcos¢ + R2, (27.5) 

so that by putting (27.5) into (27.4) we obtain for the component of the elementary 

torque about the z-axis 

2., 2 R,y . Ksine 12y, R(x - Roose) dxds (27.6) dM = =(1 . 
rl 2 (x2 - 2xRcos¢ + R2)3/2 

For x > Rcos¢ the torque is positive and for x < Rcos¢ negative (see fig. 11). 

To obtain the torque M acting on the whole circular current, we have to integrate 

formula (27.6) for x in the limits from O to R and for ¢ in the limits from 0 to 2w. 

B — C 

Fig. 10. Sigalov's first experiment.
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Both integrations can easily be carried out in a final form, however at the point 

x = R, ¢ = 0 there is a singularity: the distance between dr and dr' becomes egual 

to zero. Thus we shall write the solution in the following form 

2t R 02, 2n 2n 
M= [ RE(x - Rcos¢)dx _Rde [Rdo = - mn:'r“'(') + 2mR. (27.7) 
00 (x2 - 2xRcosé +R2)3/7 ) o 2sin(¢/2) o 

27.2. ACTION OF THE CIRCULAR CURRENT ON THE INTERNAL RADIAL CURRENT. 

To find the torque with which the circular current acts on the radial current, 

we change the directions of the currents I and I' to the opposite. In such a case 

the acting forces remain the same, but we shall have now the angles ¢ and ¢' less 

than w/2 and this will facilitate the matemantics (fig. 12). 

The elementary torque about the z-axis appearing as a result of the action of 

the circular current element dr' on the radial current element dr will be 

M = xfxdf, ' (27.8) 

so that by substituting (27.2) into (27.8) we obtain 

M = (x/rl)Rx{cosy(-8) + cosy'R - sing(r/r)}drdr'. (21.9) 

As r/r = - siny'p - cosy'$, dr = dx, dr' = Rdp, X§ = cos¢Z, Xxp = singZ, we 

obtain 

dM = (x/r-z){- cos¢cosy + sing(singsing' + cosecosy')Z = 

(x/ré)(- coscosy + singsing)z, (27.10) 

as ¢ - ' =7/2 - V. 

Fig. 11. Action of intemal radial current on circular current.
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Fig. 12. Action of circular current on internal radial current. 

We have from fig. 12 

cosy = (x - Rcos¢)/r, siny = Rsiny/r, r2 = R2 - 2xRcos¢ + x2 (27.11) 

so that by putting (27.11) into (27.10) we obtain for the z-component of the torque 

M = (xR/r)kosg(Reos - x) + Rsineldxdy = —R(R - xc0s0) ""g"’ > 
(R2 - 2xRcos¢ + x )3/ 

As R > xcos¢, the torque is directed along the z-axis and this leads to anti- 

clockwise rotation. 

(27.12) 

To obtain the torque acting on the whole internal radial current, we have to in- 

tegrate formula (27.12) for x in the limits from 0 to R and for ¢ in the limits from 

0 to 2n. 1 could not evaluate the integral in elementary functions and perhaps this 

is not possible (the mathematicians have the last word). As the integral for x = R, 

¢ = 0, has singularity, [ shall write it as a positive number B which is infinitely 

M= [dof xR(R - xcos¢) dxdy _ B. (27.13) 

o0 o (RE - 2xRcose + x2)3/2 

27.3. ACTION OF THE EXTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT. 

The elementary torque about the z-axis appearing as a result of the action of the 

external radial current element dr' on the circular current element dr will be given 

by formula (27.1), so that by substituting (24.3) into (27.1) we obtain (fig. 13) 

M = (erz)ax(cosw(-i) + cosnp'$ - sing(r/r)}. (27.14) 

As r/r = sinyp + cosyd, dr = Rd¢, dr' = dx, ~ 
PxX = - sindZ, px§ = 2, we obtain



Fig. 13. Action of external radial current on circular current. 

dM = (RZ/r%)cosy' dxdv. (27.15) 
We have from fig. 13 

sin' = Rsine/r, rZ = x - 2xReoso + RZ, (27.16) 

so that by putting (27.16) into (27.15) we obtain for the z-component of the elemen- 

tary torque 

R RPsindy 172 ~ R%(x - Rcoso) dxds (27.17) dM = (1 - 2220 8y gedp = . 
ré r2 (x2 - 2xRcos¢ + R2)3/2 

As x > Rcos¢, the torque is directed along the z-axis and thus leads to anti- 

clockwise rotation. 

To obtain the torque acting on the whole circular current, we have to integrate 

formula (27.17) and we obtain 

2n o 2 on 
M= [d¢ [ g (x - Rcos¢)dx2 75 Rd¢ - Rlnta"". (27.18) 

0 R (x% - 2xRcos¢ + RE)¥2  o2sin(e/2) tan0 

Taking into account formulas (27.7) and (27.18), we see that the torque which the 

internal and extermal radial currents exertson the circular current is finite and 

equal to 2nR. 

27.4. ACTION OF THE CIRCULAR CURRENT ON THE EXTERNAL RADIAL CURRENT. 

Here again as in Sect. 27.2 we exchange the directions of the circular and radial 

currents to the opposite to have the angles ¢ and y' less than n/2. 

The elementary torque about the z-axis appearing as a result of the action of the
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circular current element dr' on the radial current element dr can be obtained exact- 

ly in the same way as in Sect. 27.2 (fig. 12 can be used by considering the element 

dr outside the circle). For the z-component of the acting elementary torque we shall 

obtain formula (27.12). 

For R > xcos¢ the torque is positive and for R < xcos¢ the torque is negative. 

As for x near to the circle, where the acting force is the largest, we have 

R < xcos¢, I shall write the torque as a negative number -D, where D, because of the 

appearing singularity, is infinitely large 

2n 2 
_ RE(R - xcos¢) dxd¢ _ M= [d [ =-D. (27.19) 

o R (Rz - 2xRcos¢ + x2)3/2 

27.5. ACTION OF THE AXIAL CURRENT ON THE CIRCULAR CURRENT. 

Before beginning with the calculation, let me note that the torque exerted by the 

circular current on the axial current obviously is zero as the levers of the forces 

are null (see fig. 9). 

The elementary torque about the z-axis appearing as a result of the action of 

the axial current element dr' on the circular current element dr will be given by 

formula (27.1). Putting in it (24.3) we obtain 

M = (R/r2)pxcosy '$drdr'. (27.20) 
We have from fig. 9 

cosy’ = - z/r, e R, (27.21) 

so that by putting (27.21)into (27.20) we obtain 

2 
@M =-_Rzdzdo (27.22) 

(22 . R2)3/2' 

The elementary torque is obviously negative. For the integral torque we obtain 

M=- [d | ————=—===- [Rd¢p = - 2nR. (27.23) 
o o (z2 + R2)3/2 s} 

The torque with which the rectangular current acts on the circular current will 

be the sum of the torques (27.7), (27.18) and (27.23) and is null as it must be. 

The torque with which the circular current acts on the rectangular current will 

be given by the sum of the torques (27.13) and (27.19). As it also must be null, we 

shall have B = D. 

The torque acting on the moving part of Sigalov's experiment (fig. 10) will be 

the sum of the torques (27.7), (27.13), (27.18) and (27.23). Thus it will be equal 

to the positive number B. As a matter of fact Sigalov's experiment is a simplified 

variation of the cemented Barlow disk (see Sect. 47). If the sliding contact will 

be not at point E but at point F and the circular current will not rotate, Sigalov's 

experiment will be a simplified variation of the uncemented Barlow disk. As the net 

torque on the current in the circular wire is null,its rest or rotation is immaterial.
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28. THE ROTATING AMPERE BRIDGE (RAB) 

The drawing of the circuit which [ have called ROTATING AMPERE BRIDGE (RAB) is 

presented in fig. 14. Current 1 comes from "infinity" along the upper axial wire 

PO, flows along the upper rotating and propulsive arms OA and AB with lengths R, 

along the shoulder BB', then along the lower propulsive and rotating arms B'A‘ and 

A'0' and along the lower axial wire 0'P' goes to “infinity". 

Easily can be seen, taking into account Whittaker's formula (24.3), that the net 

torques about the z-axis produced by the interaction of the currents in the follow- 

ing wires are null: (i) axial wires and rotating arms, (ii) axial wires and shoul- 

der, (iii) shoulder and propulsive arms, (v) action of propulsive arms on axial 

wires, (vi) action of shoulder on rotating arms. 

Di fferent from zero are only the torques due: (i) to the action of the currents 

in the axial wires on the currents in the propulsive arms, (ii) to the interaction 

of the currents in the rotating and propulsive arms, and (iii) to the action of the 

currents in the rotating arms on the current in the shoulder. 

Now I shall calculate the respective torques, omitting also in this section to 

write the factor 12/c2 in the formulas. 

dr’ 

0 A' 

Bl 

Pl 

Fig. 14. the rotating Ampere bridge.
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28.1. ACTION OF THE AXIAL CURRENT ON THE PROPULSIVE ARM CURRENT. 

A current element Idr' along the axial wire PO acts on a current element Idr 

along the propulsive arm AB, to which the vector distance is r, with the elemental 

force generating torque about the z-axis 

df = (r.dr')dr/rd = cos(r.dr')drdr'i/rz =z dxdzi/(x2 + 28 +R2)3/2. (28.1) 

The moment of this force about the z-axis will be 

M = (x% +RS pzdxdzf/ (2 + 2% + RE)VZ o - Radways/ (K8 + 22 + RE)V/2: (28.2) 
For the z-component of the integral torque we obtain, taking AB = R, PO = =, 

Re R 
M=- [ [ Rzdxdz/(x® + 22 + RE)/2 o - R [(® + RE) V24x = - RArsinnl. (28.3) 

00 0 

If the shoulder BB' is long enough, we can neglect the torque produced by the 

action of the axial wire current PO on the current in the propulsive arm B'A'. Thus 

taking into account also the torque due to the action of the current 0'P' on the 

current B'A', we shall obtain for the z-component of the net tomque 

Mnet = - 2RArsinhl = - 1,7628R. (28.4) 

28.2. INTERACTION BETWEEN THE ROTATING ARM CURRENT AND THE PROPULSIVE ARM CURRENT. 

Let us calculate first the force with which a current element dr' of the rota- 

ting arm OA acts on a current element dr of the propulsive arm AB, denoting by r 

the vector distance from dr' to dr (r is not shown in fig. 14). According to for- 

mula (24.3), in which we exchange the places of the first two terms, we shall have 

df = ((r.dr)dr' + (r.dr')dr}/rs = O + (Rey)X)}dxdy/ro. (28.5) 

The moment of this force about the z-axis will be, if denoting by a the vector 

distance from the axis to the element dr and by a the angle concluded between the 

vector a and the y-axis, 

M = ax(x§ + (R-y)X}dxdy/r> = alxsina - (R-y)cosa}Zdxdy/r> (28.6) 

3332 (28.6) (2 - (R-y)R)Zdxdy/{xC + (R-y) 

Let us now calculate the force with which the current element dr of the propul- 

sive arm AB acts on the current element dr' of the rotating arm OA, denoting also 

in this calculation by r the vector distance from dr' to dr, 

df' = (- (r.dr')dr - (r.dr)dr')/eS = (= (Ry)% - x§)dxdy/r. (28.7) 

The moment of this force about the z-axis will be 

M = yixl -(R-y)K - x§)dxdy/r3 = y(R-y)Zdxdy/ (% + (R-y)2)¥/2, (28.8) 

The net torque due to the interaction of the current elements in the rotating 

and propulsive arms will be the sum of the torques (28.6) and (28.8) 

Moo= = (- (Rey)PiZaxdy/ 8 + (Rey)B3 Y2 (28.9)
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The integral torque produced by the interaction of the currents in the rotating 

and propulsive arms will be obtained by integrating the elemental torque (28.9) for 

x in the limits from O to R and for y in the limits from 0 to R. If making then the 

substitution R-y = Y, dx = - dY, we obtain for the z-component of the net torque 

Mnet 

Thus the net torque due to interaction of the currents in the rotating and 

RR R R 

= [ 02 - (Rey)2hdndys 2+ (Rey)21¥/2 = [ J0E - ¥ yanans (6 +¥)¥2 < 0, 

" °° (28.10) 

propulsive arms is null. 

28.3. ACTION OF THE ROTATING ARM CURRENT ON THE SHOULDER CURRENT. 

A current element dr' along the rotating arm OA acts on a current element dr of 

the shoulder BB', to which the vector distance is r, with the elemental torque 

dM = Rxxdf, (28.11) 

in which we have to put for the elemental force, denbting by z the distance from B 

to dr, 

df = (r.dr)dr'/r3 = (z/r).v/r3. (28.12) 

Thus we obtain for the z-component of the whole torque, taking BB' = o, 

R = R Rz dz dy . 
M= [dy [ = [ = RArsinhl. (28.12) 

o0 o {(R-y)? +R8 +22)32 o (R 4 (R-y)2)1/2 

The same torque will be produced by the action of the current in the rotating 

arm A'0' on the current in the shoulder BB'. Thus for the z-component of the net 

torque acting on the current in the shoulder we obtain 

"net = 2RArsinhl = 1.7628R. (28.13) 

Comparing formulas (28.4) and (28.13) we see that the net torque due to the in- 

teraction of all currents in the rotating Ampere bridge is null. 

One can easily see that if the length of the shoulder will be not considered as 

very long, the net torque acting on RAB will be again zero. In such a case the net 

torque acting on the shoulder will be less than (28.13) but besides the negative 

torque (28.4) there will be a positive torque acting on the current AB in the pro- 

pulsive arm due to the lower axial current 0'P'. The relevant calculation gives for 

the net torque again null result. 

As all current elements in RAB are mutually perpendicular, the calculation with 

Nicolaev's formula will lead to the same result. 

Easily can be calculated(zz) that also according to Grassmann's formula the 

torque in RAB must be null. . 

Ampere's formula which preserves Newton's third law, of course, will lead to a 

null torque in RAB.
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29. ELECTROMOTORS DRIVEN BY VECTOR AND SCALAR MAGNETIC INTENSITIES 

The vector and scalar magnetic intensities are defined, respectively, by the se- 

cond and third formulas (8.6). 

If not Whittaker's formula (24.3) but Nicolaev's formula (24.12) will be the 

right one, the scalar magnetic intensity is to be written not in the simple Whitta- 

ker's form (8.6) but in the complicated Nicolaev's form (24.14). Without precising 

the exact mathematical expression of the scalar magnetic intensity S through the 

magnetic potential A (for the time being when not enough experimental evidence is 

accumulated), I shall call scalar magnetic intensity this potential force which acts 

along the test current element and vector magnetic intensity this one which acts at 

right angles to the test current element. When it will be necessary, I shall present 

the scalar magnetic intensity preferably in its Whittaker's form. 

The ELECTROMAGNETIC MOTORS which are driven by the vector magnetic intensity B 

(such are all electromotors built by humnity in two centuries of electromagnetism) 

will be called B-MOTORS and the electromagnetic motors which are driven by the sca- 

lar magnetic intensity S (see Sects.58 -60) will be called S-MOTORS. 

Here 1 shall present the most simple S-motor which still I have not constructed, 

but I have no doubts that it would not work in the predicted way. 

We have found in Sect. 27.5 that the torque with which an axial current acts on 

a circular current (see fig. 9) is given by formula (27.23). As in all formulas of 

Sect. 27, for brevity's sake, the common factor II'/cz was omitted, let us write 

again this formula in its complete form: Thus the z-component of the torque with 

which a vertical positive current I' acts on a current I flowing along a circle 

with radius R in the positive (anti-clockwise) direction is 

M= - 2011'R/c2. (29.1) 

Let us then construct our S-motor in the following way (fig. 15): 

R condenser C with a big capacitance is charged to a high potential. The vertical 

wire ac, which at its lower end is connected with a big metal sphere, can make suc- 

cessively contact with the positive and negative electrodes of the condenser C. If 

this contact will be made with a frequency equal to the own frequency of Oscillations 

of the suspended on strings permenent ring magnet, this magnet can be set in oscil- 

lations. Indeed, the permanent ring magnet can be presented as two circular currents, 

1, with radii equal to the internal and external radii of the ring magnet, Rint and 

Rext' The torque acting on these circular currents, for the moment shown in the fi- 

gure when electrons fly from the left plate of the condenser downwards to the big me- 

tal sphere (i.e., when the current is pointing upwards) at the indicated directions 

of the currents in the magnet (on the internal periphery the current is flowing clock- 

wise and on the external periphery anti-clockwise) will be 

(L Met = Mine * Moxt = (2NI1/C)(Ryp = Ry o). (29.2)
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Thus the motion of the magnet at this laps of time will be negative (clock-wise;. 

At the next laps of time, when the metal sphere will be connected to the right, po- 

sitive electrode of the big condenser, the motion of the magnet will be positive. 

Let now exchange the ring magnet in fig. 15 by a circular wire and let insert in 

it a source of alternating electric tension with frequency v. If the frequency with 

which the wire ac is connected successively to the negative and positive electrodes 

of the condenser C will be also v, the circular current wire will begin to rotate. 

As the moment of force with which the circular current wire acts on the vertical 

current wire is zero, this experiment will present a patent violation of the angular 

momentum conservation law. 

It is interesting to note that the scalar magnetic intensity with which the elec- 

tromagnetic system consisting of the driving big condenser C, the wire ca and the 

big "storage" sphere acts on the circular current can be calculated either as a mag- 

netic effect by the help of the last equation (8.6) or as an electric effect by the 

help of equation (8.10). The force on the circular current will act in the direction 

of the current when divA < 0, i.e., 3¢/3t > 0, or against the direction of the cur- 

rent when divA > 0, i.e., 3¢/3t < 0. 

These childichaly simple and clear effects are absolutely umknown to offial phy- 

sics. 

L
R
 

R 
A
R
 

R 
R 

} 

Fig. & 

Fig. 15. S-motor with interrupted current.
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Let us make these two types of calculation for the experiment shown in fig. 15, 

mking use also of fig. 9. We suppose that the current wire ac is infinitely long 

and that a constant current I' flows along it from point a (where there is a big 

"storage” sphere charged with positive charges) to point c (where there is another 

“storage" sphere charged with negative charges). The magnetic potential generated 

by the current I' along the circular loop with radius R will be 

A= [1'dzd/cr = (1'7c)f dad/(RE + 22)Y/2, (29.3) 
0 0 

The scalar magnetic intensity generated by this vertical current along the cir- 

cular loop will be 

S = - divA = - 9A/3r = - (1'/c)fzdz/(R® +22)¥/% = - 1'/cR. (29.4) 
0 

We shall obtain the same value for the scalar magnetic intensity, if calculating 

it according to formula (8.10). To make the calculation more simple, let calculate 

S in the equatorial plane of the storage sphere at a distance R from its center. 

The potential of the charges q on the sphere at a distance R from the center is 

¢ = g/R, independently of the radius of the sphere(s). When the current extracting 

charges from the storage sphere is I', for a time At the extracted charges will be 

1'At and we shall have for the scalar magnetic intensity 

S = 3¢/cat = (1/c)ad/at = {9 - l;fi:)/k - 9/R 1'/cR, (29.5) 

what is exactly the value (29.4). 

Let me note that yet Grassmann(m) pointed out that the observation of the action 

of open currents on other currents (current elements) is of a high importance. For 

my big surprise, to the best of my knowledge, no such quantitative observations have 

been done in the 150 years after Grassmann. Here | should like to cite some remar- 

kable lines of Grassmann:(w) (p. 14) 

Oberhaupt ist klar, daB eine Entscheidung zwischen beiden Theorien (Ampere's 
and Grassmann's theories), da die Wirkung, welche geschloBene Strome iiben, 
nach beiden dieselbe ist, nur miglich ist, wenn man die Wirkung betrachtet, 
welche ein begranzter Strom iibt... Der begridnzte Strom wiirde daher so her- 
vorzurufen sein, daB man zuerst etwa zwei Kugeln mit entgegengesetzter Elek- 
trizitdt moglichst stark lide, und sie dann nach der Ladung (nicht wdhrend 
derselben) in leitende Verbindung brachte. Dann hdtte man die Wirkung dieses 
begranzten Stromes auf irgend einen elektrischen Strom oder besser auf einen 
Magneten zu beobachten, und die Anordnung dabei so zu treffen, daB die Wirkun- 
gen nach beiden Theorien mdglichst verschieden erfolgen. 

1f someone had followed Grassmnn's advice and had done the experiment shown in 

fig. 15, one would had observed the rotation of circular current many and many years 

ago, and the wrong dogma that the magnetic force acting on a current element must 

be always at right angles to the element would not surviwe all these years. Neither 

Maxwell's dogma about the closed currents could then survive. 

Now I shall reveal a very interesting aspect of the S-motors, namely that not
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back but forth tension is induced at their rotation. 

If the current along the circular loop is flowing anti-clockwise (as in fig. 9;, 

the forces acting on the current conducting charges, according to the fourth formula 

(21.1) - as well as according to formula (24.15) - will be directed against their 

velocities, so that the circular wire will begin to rotate in a clockwise direction. 

At this motion, all positive charges in the wire which can become current conducting 

charges will obtain a low convection velocity in a clock-wise direction. The scalar 

magnetic intensity (29.4) will begin to act on these convected charges,according to 

the fourth formula (21.1), with an electromotive force opposite to their velocity, 

i.e., with a force pointing along the direction of the initial driving current. 

The force acting on a unit convected positive charge will be the induced elec- 

tric intensity (see again formula (29.4)) 

E; g = (W) = aRsn/c? = - ar'n/c?, (29.6) 

where Q is the angular velocity of rotation of the circular wire and n is the unit 

vector at any single point of the wire pointing along its linear rotational velocity, 

i.e., against the direction of the initial driving current. Thus the electric inten- 

sity induced by the scalar magnetic intensity is directed along the driving current 

and I call it INDUCED FORTH ELECTRIC INTENSITY. 

The induced electric tension will be 

Uiy = zgREind.dr = - (2n/c)aRr. (29.7) 

and will also act in anti-clockwise direction, i.e., will have the same direction 

as the driving electric tension, Udr’ and I call it INDUCED FORTH ELECTRIC TENSION. 

We know that the tension inquced in motors driven by a vector magnetic intensity, 

B, is always opposite to the driving tension and for this reason it is called INOU- 

CED BACK ELECTRIC TENSION. And one can immediately show why in B-motors a back elec- 

tric tension is induced: 

. Let us have a current element Idr put in a vector magnetic field B which is per- 

pendicular to dr. The force acting on this current element, according to the third 

formula (21.1) is 

df, = (ldr/c)xB. (29.8) 
wire 

The velocity v acquired by the wire will have the direction df,;  which is 

drxB/drB, and the induced electric intensity acting on the convected charges will 

be, again according to the third formula (21.1), 

v(drxB/drB)xB = - (v/drB)Bx(dr8) = - (v/drB)Bzct' = - vB(dr/dr), (29.9) Eing = 

i.e., 1t will be directed against the driving electric intensity (and tension) which 

acts in the direction dr/dr. 

After having presented the "mechanism" according to which a forth electric ten- 

sion is induced in S-motors and a back electric tension is induced in B-motors, let 

us make a nore detailed conmparison between a B-motor and an S-motor.



- 106 - 

Let us assume that both motors have the same ohmic resistance R, and that they 

are driven by equal driving tensions Ug.. Thus the rest current in both motors will 

be the same lrest = Ud,./Ro. 

If we let the B-motor rotate, it will acquire such an angular velocity 2 that its 

friction power Pfr = QMsp, where Mfr is the friction torque at the angular velocity 

i, will become equal to the induced back power Pjnq = IUj,q4, where U;pnq is the ind- 

ced back tension and I is the current in the motor at the angular velocity f. 

Indeed, let us assume, for simplicity, that the motor is a Barlow disk (see Sect. 

47) with radius R in which the cylindrical magnetic field with intensity B is gene- 

rated by a cylindrical magnet. The driving torque is produced by the interaction of 

B and the current I which flows along the disk's radius. If we consider only one 

current element Idr at a distance r from the center, the driving torque produced by 

its interaction with B will be dMy. = rdf = rldrB/c, where df = IdrB/c is the force 

acting on the current element. The motor will stop to increase its angular velocity 

when the sum of all these elementary torques will become equal to the friction torque 

Mf.. At the “"equilibrium" angular velocity f, when the current in the circuit will 

be I, we shall have 

Mg 
R 

=q fdM 
[¢] 

r ind® (29.10) 
R R 

. = QbfrldrB/c =1 £der/c = IU 

where v is the velocity of the disk's parts with radius r and Uind is the induced 

back electric tension. For the current we shall have I = (Ug. - Uind)/Ry. At rest 

of the disk the power Pregt = IrestUgr = 12estRo Will be released as heat. At rota- 
tion of the disk the power P = I{Ug, - Uipg) = IZRO will be released as heat and 

the power Ppach = IUjng will be delivered as mechanical power overwhelming the fric- 

tion. The power delivered by the driving electric source Pyp = IUy. will be the sum 

of the last two powers. 

If we let the S-motor rotate, it will acquire such an angular velocity Q that its 

friction power Pg. = Mg, will become equal to the iduced forth power Pjnq4 = IUjng- 

Indeed, let us assume, for simplicity, that our motor is of the kind of the mo- 

tor shown in fig. 9, assuming that at the point a there is a huge store of positive 

charges and at point ¢ there is a huge store of negative charges, so that certain 

time a constant current 1' flows from point a to point c. The driving torque produ- 

ced by the action of the scalar magnetic intensity S on the current along the cir- 

cular loop will be 
M. = [ Roxdf .., (29.11) 
dr 21{R whit 

where (see (29.4)) 

df iy = ldrS/c = - 11'dr/cR (29.12) 

is the force acting on the current element Idr. Putting (29.12) into (29.11), we ob- 

tain for the 2-component of the driving torque
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Myp = - J 11'dr/cC = - 2nRIT'/CC. (29.13; 
2nR 

The motor will stop to increase its angular velocity when its driving torque 

will become equal to its friction torque. At such an "equilibrium" angular velocity 

Q we shall have (see (29.7)), noting that Mg, and My, at the “equilibrium” an- 

gular velocity @, are equal but oppositely directed, 

2 ' . 
Mg, = My = - (2m/c™)QRLI" = Iuind' (29.14, 

At such a stationary rotation the power P = l(udr + Uind) s IzRc will be released 

as heat and the power Pp,., = IUjpq will be delivered as mechanical power overwhel- 

ming the friction. The power delivered by the driving electric source Pgr = IUgr 

will be the difference of these two powers. 

The driving torque of the B-motor is the largest at rest of the motor and reaches 

its minimum at the angular velocity Q. The driving torque of the S-motor is the less 

at rest and reaches its maximum at the angular velocity Q. 

If the friction power QMg will always remain less than the mechanical power 

IUjpngs the S-motor will steadily increase its angular velocity until the destruction 

of the motor by the appearing centrifugal forces. Thus the S-motor violates the 

energy conservation law. 

A B-motor can be run as a GENERATOR (machine generating electric tension and 

eventually electric current and power) if applying to it a mechanical torque. The 

mechanical torque which appears in a B-GENERATOR,because of the interaction 

of the induced current with the B-field, is always directed oppositely to the dri- 

ving mechanical torque and brakes the rotation. In every conventional B-generator 

the produced electrical power is equal to the mechanical power lost by the source 

of mechanical energy. Let me note, however, that I have constructed B-generators 

where quite the whole produced power is "free", i.e., produced from nothing; such 

are ny non-braking B-generator MAMIN COLIU (Sect. 53) and the self-accelerating 

generator VENETIN COLIU (Sect. 54). 

The considered above S-motor can also be runas a generator, applying to it a me- 

chanical torque. The mechanical torque which appears in an S-GENERATOR, because of 

the interaction of the induced current with the S-field, is always directed in the 

direction of the driving mechanical torque and supports the rotation. The produced 

electric power in the S-generator is equal to the mechanical power gained by the 

source of mechanical energy. 

If Whittaker's formula is the right one, a scalar magnetic field can be not pro- 

duced by closed current loops, as the divergence of the magnetic potential produced 

by a closed current loop is zero according to Whittaker's formula As, however, it is 

very likely that Nicolaev's formula is the right one, S-motors and S-generators can 

be "driven" by closed currents. Such machines are considered in Sects. 58 -60. 
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30. QUASI-STATIONARY ELECTROMAGNETIC SYSTEMS 

1 make the following classification of the material systems (see also Sect. 9): 

1. A material sytsem is called STATIC if there is such a frame of reference with 

respect to which its particles remain at rest. The image (see Sect. 2) of a static 

system remins the same in time. 

2. A material system is called QUASI-STATIC if its images remain the same in time 

but there is no such a frame of reference with respect to which its particles remain 

motionless. According to this definition, the particles of a quasi-static system can 

move with respect to each other, but in the direction of their velocities they must 

be placed closely enough and they must have the same character, so that they may be 

distinguished by their serial numbers only. If we do not pay attention to their se- 

rial numbers, such a systemwill, in different moments of time, create the same image 

in our mind. The moving points of a quasi-static system always form ring-shaped cur- 

rent tubes. 

3. A material system is called STATIONARY if some of its characteristics remain 

constant in time. The quasi-static system represents the most simple stationary sys- 

tem because the whole complex of characteristics, namely its image, remains constant 

in time, 

4. A material system is called QUASI-STATIONARY if some of its characteristics 

change insignificantly in time or in certain specific time interval. 

5. A material system is called DYNAMIC if its images change in time. 

6. A material system is called PERIODIC if its images repeat themselves regularly 

after some time interval. This time interval is called PERIOD. 

7. A material system is called QUASI-PERIODIC if its images repeat themselves af- 

ter some time interval but not completely; however, after sufficiently long period 

of time (i.e., with the increase of the number of the "quasi-periods") the image of 

the system approaches closely enough its initial image. 

The field of static and quasi-static systems of electric charges is called a CON- 

STANT ELECTROMAGNETIC FIELD. 

Let us consider a system of electric charges which generates the potentials ¢ and 

A (given by formulas (8.1)) in the different space points. 

1. If 
at/at = 0, A=0, (30.1) 

the system is static. 

2. If 
ap/at = 0, 9A/ot = 0, (30.2) 

the system is quasi static or stationary. 

3. If 
a%/at £ 0O, aA/3t £ 0, (30.3) 

but we can assume 

e/at? =0,  d%Asat? =0, (30.4)
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the system is quasi-stationary. 

The conditions (30.4) can be fulfilled strictly only if ¢ and A are linear func- 

tions of time (for example a circular current which constantly increases its radiws). 

If the system is periodic, the conditions (30.4) cannot be fulfilled. But if the 

periodic change is slow and for long enough time intervals we can accept that ¢ and 

A are linear functions of time, we can accept the system to be quasi-stationary. 

Usually if the shortest period of the system Tmin is much larger than the time 

t = Dmaxlc' where Dmax is the largest size of the system, the system is quasi-sta- 

tionary. 

Another criterion for accepting an electromagnetic system to be quasi-stationary 

is the following: The effects due to the accelerations (second time derivatives) of 

the charges (i.e., the radiation of the charges) must be feeble and thus can be neg- 

lected. 

For a quasi-stationary system not equations (9.16) but equations (9.15) are va- 

lid. Let us write them again 

Ad = div(grade) = - 4nQ, A = grad(divA) - rot(rotA) = - 4nJ. (30.5) 

As I showed in Sect. 9, these equations are trivial mathematical results of the 

definition equalities (8.1) for the electric and mgnetic potentials and equalities 

(9.14) for the charge and current densities. 

Another trivial result of equations (8.1) is the equation of potential connection 

(8.8) which I write here again 

divA = - 3d/cat. (30.6) 

Let us write again the first notation (21.1) and the second notation (8.6) 

E - grade, B = rotA, (30.7) coul © 
called Coulomb electric intensity and magnetic intensity. 

If we rewrite the second equation (21.1) and we take divergence from the second 

expression (30.7), we obtain 

E - 3A/cat, div(rotA) = 0, (30.8) 
tr 

or 

rotE, = - 3B/cat, dive = 0. (30.9) u
 

tr 

If we substitute (30.6) and the second expression (30.7) into the second equation 

(30.5) and if we rewrite the first expression (30.5), we shall have 

rotB = - 3(grad®)/cat + 4nJ, div(grade) = - 4nQ, (30.10) 

or 

rotB = 3Ecou]/c3t + 4nd, divE 4nQ. (30.11) coul ° 

Equations (30.8) and (30.10) are the Maxwell-Lorentz equations for a quasi-statio- 

nary system of electric charges in their most logical form. 

Equations (30.9) and (30.11) are the Maxwell-Lorentz equations for a quasi-statio- 
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nary system in their usual form. It is extremely inportant to note that Etr in the 

first equation (30.9) is completely different from Ecoul in the first equation 

(30.11). These two electric intensities have noting in common. However B in the 

first equation (30.9) and B in the first equation (30.11) is one and the same quan- 

tity. 

Official physics defends the opinion that a magnetic field can generate elecric 

field and electric field can generate magnetic field. This is a complete nonsense 

(this view-point is defended also by Jefimenko in his new book "Causality, electro- 

magnetic induction and gravitation"(Electret Scientific Company, Star City, WV 26505, 

USA, 1992)). The electric and magnetic intensities are determined (and defined!) 

by the potentials and only by the potentials. 

Now I shall examine the highly controversial problem about the "DISPLACEMENT CUR- 

RENT" (see Sect. 13). I shall show that there is nothing puzzling here if this no- 

tion will be rightly understood. ) 

Maxwell supposed that if a conduction current becomes interrupted at the plates 

of a condenser, between those plates a current with density (13.12) "flows", cal- 

led "displacement current". Maxwell supposed that displacement current has the same 

magnetic character as conduction current with the same density, i.e., that it acts 

with potential magnetic forces on other currents and reacts with kinetic forces 

against the potential magnetic action of other currents. And Maxwell supposed (or 

such was rather the interpretation of his epigones) that all this is done by the 

hypothetical current "flowing between the plates of the condenser". This is absolute- 

ly not true. 

It is obvious that such a displacement current cannot react with kinetic forces 

against the action of other currents, as it flows in vacuum, and neither the Lord 

is able to set vacuum in motion. On other side vacuum cannot act with potential for- 

ces on other currents as vacuum is vacuum {“a rose is a rose, is a roseis a rose"). 

To understand the essence of the displacement current, let us consider not the 

differential equation (30.11) but the integral equation (13.11), rewriting it for a 

quasi-stationary system 

{B.dr = (a/cat)éfcou].cs + (4n/c)£J.dS. (30.12) 

The magnetic intensity is generated by the currents in whole space. Meanwhile in 

(30.12) the linear integral of B along the closed loop L is related only to the con- 

duction currents crossing the surface S. If fromboth sides of S there are condenser's 

plates which interrupt conduction currents, these interrupted currents generate such 

an electric intensity field Ecoul between the condenser's plates that 

{B.dr = (A/cAt)[E -5 (30.13) 
S 

Thus it is not the changing electric field ascou]/at which generates B. The integral 

on the right side of (30.13) gives simply information about the quantity of conduc-
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tion current interrupted on the surface S. Consequently the magnetic intensity cai- 

culated by formula (30.13) is generated by charges flowing to the condenser's plates 

and these charges react with kinetic forces to the action of other currents flowing 

between the condenser's plates or outside. 

If 9, 1/0t = 0, formula (30.12) shows that ¢§B.dr is determined only by the 

quantity of current crossing the surface. This is true. But when one begins to cal- 

culate to find B, one sees that one has to take into account the currents in whole 

space. The displacement current term in (30.12) indicates that when making integral 

calculations to find B one has to take into account also the interrupted by the sur- 

face S currents. 

That's all about the displacement current! 

Let us now assume that the considered electromagnetic system consists not only 

of charges (free or in conductors) but also of dielectrics and magnetics. In such a 

case the Maxwell-Lorentz equations (30.9) and (30.11) are to be written in the form 

rotE, . = - 3/cat, divB = 0, (30.14) 

rotH = aD/cat + 4nJ, divD = 4nQ. (%0.15) 

Now, if there is a condenser between whose plates a dielectric with permittivity 

€ is put, between these plates a POLARIZATION CURRENT will flow with density 

301 = ADENcat = (e - 1)aE/cat. (30.16) 

This current does not transfer charges from one plate of the condenser to the 

other, as the case will be if the plates will be connected by a wire. Because of the 

orientation (or polarization) of the molecular electric dipoles along the field of 

the acting electric intensity E, generated by the charges on the plates, it seems 

that charges have been transferred, but, as a mtter of fact, charges have not been 

trans ferred. 

The same phenomenon appears also when there is vacuum between the plates: as the 

charges coming to one of the plates repel by electrostatic induction charges of the 

same sign from the other plate, it also seems that charges have been transferred. 

Thus there are many common features between polarization current and displacement 

current, and some people call also the polarization current “"displacement current”. 

I, however, rigirously separate them. In any case, both the displacement and polari- 

zation currents do not act with potential magnetic forces on other currents and do 

not react with kinetic forces against the potential action of other currents. ! con- 

firmed these assertions experimentally (see Sects. 61 and 62). 

31. ELECTRIC DIPOLE MOMENT 

Let us consider the constant electric field of a stationary system of charges at 

large distances from the system, that is, at distances large compared with the dimen- 

sions of the system.
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We introduce a frame of reference with its origin somewhere in the system of char 

ges. let us denote the radius vector of the reference point by r and the radius vec- 

tor of the various charges by - According to the first formula (8.1), the electric 

potential generated by the system at the reference point will be 

" 

t
~
1
2
 

n 
¢ = J q./R; 

izt Vv =1 
qi/|r-ril' (31.1) 

where 

Rp=r-r, (31.2) 

is the vector from the charge q; to the reference point. 

Let us investigate expression (31.1) for large r, i.e., for r > r.. To do this, 

let us expand (31.1) as power series in r» retaining only the terms linear in rs 

n n n 
o(lr - ryl) = o(r) - .{l{ao(r)/ar}.ri = .Zlqi/ri - grad(l/r).‘flqiri. (31.3) 

1= 1= . 1= 

If we denote the total charge by 
n 

Q= ] (31.4) 
i=1 

formula (31.3) can be written 

o = a/r + dr/r3, (31.5) 
where the sum n 

i=1 

is called ELECTRIC DIPOLE MOMENT of the system of charges. 

It is important to note that if the sum of all charges is equal to zero 

n 

9= fa;=0, (31.7) 
i=1 

then the dipole moment does not depend on the choice of the frame's origin. Indeed, 

the radius vectors ry and r% of one and the same charge in two different frames of 

reference, K and K', are related by the formula 

r, =R+, (31.8) 

where R is a constant vector, representing the radius vector of the origin of K' in 

K. Substituting (31.8) into (31.6) and taking into account (31.7), we obtain d = d'. 

Under the condition (31.7), the electric potential in formula (31.5) becomes 

& = d.r/rd. (31.9) 

The electric intensity, according to the first formula (21.1), will be 

E = - grad(d.r/r%) = - (1/r)grad(d.r) - (d.r)grad(1/r3). (31.10) 

Keeping in mind that d is a constant vector, we shall have (see p. 6) 

grad(d.r) =d, (31.11)
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so that 

E = {3(d.r)r - rzd}/rs. (31.12) 

1f we shall expand ¢ in (31.3) to higher orders in ri. we shall obtain other my)- 

tipole moments. The moment which corresponds to the second order terms in the expan- 

sion of ¢ is called ELECTRIC QUADRUPOLE MOMENT. Two nearly located opposite charges 

are called ELECTRIC DIPOLE. 

32. MAGNETIC DIPOLE MOMENT 

Let us consider the constant magnetic field of a stationary system at large dis- 

tances from the system. 

As in the previous section, we introduce a frame of reference with its origin 

somewhere in the system of charges. Again we denote the radius vector of the refe- 

rence point by r and the radius vectors of the various charges by ry According to 

the second formula (8.1), the mgnetic potential generated by the system at the re- 

ference point will be 
n n 

= 1= 

Making the assumption r > rs and expanding (32.1) as a power series to within terms 

of first order in ri. we obtain 
n n 

A(lr - r;l) = (l/(:r')iflqivi - (1/c)izlqivi{grad(llr).ri}. (R.2) 

As all currents in the system are closed, the first term on the right will be 

equal to zero and we shall have 
3.0 

A= (Ver )izlqivi(ri.r). (32.3) 

Taking into account that v; = dri/dt and that r is a constant vector, we can write 

. n 1 d n 1 n 

1§1q"vi(r"'r) = a{izlqiri(ri.r)} ta 1.'Z-.lqi{vi(ri.r) - ri(v;.m)} (32.4) 

If we average this equation in time, the first term on the right side will give 

zero as a total time derivative of a limited quantity. Thus introducing the quantity 

n n 
m = (1/2c).21qi(rixvi) = (1/2c).erixji, (3.5) 

1= i= 

which is called MAGNETIC (DIPOLE) MOMENT of the system of charges, we can present the 

magnetic potential (32.3) in the form 

A= nwr/r3. (3.6) 

The magnetic intensity, according to the second formula (8.6), will be (see p. 6 

B = rot(mxr/r3) = mdiv(r/r3) - (m.grad)(r/r). (2.7)
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First we have (see again p. 6) 

. 1 . 1 3 r.r d r._1d + r.gra = = - —_— = 

and then 
o1 1 m 3r(m.r) (m.grad)—r- = —{m.grad)r + r(m.grad—) = - X (32.9 303 B L ) 

Thus for the magnetic intensity (32.7) we obtain 

B = (3(m.r)r - rZm}/r°. (32.10) 

We see that the magnetic intensity is expressed in terms of the magnetic moment 

by the same formula by which the electric intensity is expressed in terms of the 

electric dipole moment (cf. formula (21.12)). 

The magnetic moment of the electron is called MAGNETON OF BOHR and has the value 

m, = Qgh/émmc, (32.11) 

where 9 and m, are the charge and the mass of the electron, h is the Planck con- 

stant (see Sect. 2) and ¢ is the velocity of light. 

The formula for the magneton of Bohr can easily be obtained from formula (32.5) 

which I shall write in the form 

me= (1/2c)rxqev, (32.12) 

considering the charge of the electron (and its mass, too) as a ring with radius r 

rotating with a velocity v. Multiplying and dividing the right side of (32.12) by 

Mo and taking into account that the angular momentum (the spin) of the electron is 

Irxmevl = h/2n, (32.13) 

we obtain readily formula (32.11).
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1IW. HIGH-ACCELERATION ELECTROMAG NETISHM 

33. INTRODUCTION 

In Chapter III the accelerations of the charges were assumed to be small and have 

been neglected. In this chapter I shall not assume the accelerations of the char- 

ges as negligibly small. Thus in this chapter the most general dynamic system of 

electric charges will be considered. 

As it will be shown, charges moving with acceleration radiate energy. The radia- 

ted enerqy is emitted in the form of energetic quanta which are called PHOTONS (with 

more precision - see beneath - ELECTROMAGNETIC PHOTONS). 

The photons always propagate with the velocity ¢ (in absolute space!). The uni- 

versal masses of the photons are equal to zero, so that their universal space and 

time momenta are always equal to zero and only their proper space and time momenta 

are different from zero. 

The proper space and time momenta of the photons are very small quantities and 

one can observe with macroscopic instruments only the collective action of mny pho- 

tons. When observing the flux of many photons, as the latter may interfere (see 

axiom IIl), the observer remains with the impression that high-accelerated electro- 

magnetic systems radiate waves, which are called ELECTROMAGNETIC WAVES. However with 

microscopic instruments, i.e., with particles, one can observe the action of single 

photons. Thus the assertion “"photons are at the same time particles and waves® is 

wrong. The photons are particles, but these particles can interfere if at the moment 

of observation the distance between them is less than their proper wavelength (see 

axiom III). 

When masses move with acceleration radiation of GRAVIMAGRETIC PHOTONS is to be 

expected. I shall show, however, that the radiated gravitational and magretic inten- 

sities are so feeble that the detection of gravimagretic photons (waves) is highly 

improbable. 

In high-acceleration electromagnetism I shall ignore the scalar mgnetic intensi- 

ty. Until the present time experiments demonstrating the existence of high-accelera- 

tion effects due to the scalar magnetic intensity (SCALAR ELECTROMAGNETIC WAVES) have 

not been reported. Nicolaev tries to persuade me that he has observed (see “Deutsche 

Physik", 2(8), 24, 1993)) the existence of scalar electromagnetic waves but, as | 

show in my comments to his article, his experiments are not convincing me. 

34. THE ELECTRIC AND MAGNETIC INTENSITY FIELDS OF AN ACCELERATED CHARGE 

To obtain the electric and magnetic intensities generated by a particle moving 

with acceleration, we have to put in the definition equalities for the electric and 

magnetic intensities 

E = - gradd - 3A /cdt, B = rotA (K.1)
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the electric and magnetic potentials of the particle 

¢ =q/r, A = qv/cr. (34.2) 

However, as information cannot be transferred momentarily, the observation elec- 

tric and magnetic potentials are to be expressed through the advanced and retarded 

elements of motion (see Sect. 11). 

In fig. 1 the reference point P, for which we wish to know the electric and mag- 

netic intensities at the moment of observation t, is taken at the frame's origin. 

The charge q generating the potentials and consequently the intensities is shown mo- 

ving with a constant velocity v, but we shall assume now that this velocity is not 

constant, i.e., that the charge moves with acceleration. 

Let us assume that at the observation moment t the charge is at point Q, called 

observation position. Information about the charge's velocity and acceleration can 

be obtained at P at the observation moment t = t' + r'/c = t" - r"/c, if at the ad- 

vanced moment t' a signal moving with the velocity c will be sent with this infor- 

mation from the advanced position Q' towards P, or if at the retarded moment t" a 

signal moving with the velocity c will be sent with this information back in time 

from the retarded position Q" towards P (so that this signal will reach P at the mo- 

ment t which is before the moment t"). My second axiom asserts that time has no the 

quality "reversibility", but "mathematics" does not know this! 

The distances r', r and r" are, respectively, the advanced, observation and re- 

tarded distances, and the angles 6', 6, 6" between the charge's velocity v and the 

line joining the charge with the reference point (whose unit vectors are n', n, n") 

are, respectively, the advanced, observation and retarded angles. 

I repeat (see Sect. 10.2) that official physics, proceeding from the wrong con- 

cept that the electromagnetic interactions "propagate" with the velocity c, calls 

all topsyturvy, i.e., official physics calls the advanced elements "retarded" and 

the retarded elements (to which it does not pay much attention) "advanced". I shall 

use only my terminology. 

First 1 shall make the calculation when the observation elements are presented 

by the advanced elements and then by the retarded ones. As the character of light 

propagation is not Newton-aether but Marinov-aether, the potentials must be taken in 

their Lienard-Wiechert forms (see formulas (11.3)). 

34.1. CALCULATION WITH THE ADVANCED ELEMENTS OF MOTION. 

The observation Lienard-Wiechert potentials expressed through the advanced ele- 

ments are 

o= q , A=Y (34.3) 
r'(1-n'.v/c) cr'(l - n'.v/c) 

The velocity in the denominators is a certain middle velocity between the advanced 

velocity v' and the observation velocity v, so that moving with this velocity in the time



- 117 - 

t-t' =r'/c, the charge covers the distance Q'Q. As this velocity appears only in 

corrective terms in the final result, we can take for it the advanced as well as the 

observation velocity. The velocity in the nominator of A is the observation velocity 

v=v'+ur/c, (34.4) 

where u is some middle acceleration between the advanced acceleration u' and the ob- 

servation acceleration u. To be able to carry out the calculations, we must have the 

same symbol for v in the nominator and denominator of A. Then, after having done the 

differentiations, we shall substitute v in all corrective terms by v' and in the 

non-corrective (or substantial) terms according to the relation (34.4). Then we shall 

do the same with the acceleration which will appear after taking time derivative 

from the velocity. As we shall see, the velocity will appear in the final result on- 

ly in corrective terms and the acceleration only in substantial terms. Thus the sub- 

stitution which we have to do in the final result will be 

v=v', u=u'+w'r'/c, (34.5) 

where w' is the advanced super-acceleration of the charge. 

Official physics asserts that the potentials which one has to use at the calcu- 

lation of the electromagnetic field of an accelerated charge must be given by for- 

mulas (34.3) where v is to be substituted by v'. Such potentials, however, are nei- 

ther advanced nor observation, as the pure advanced potentials will be 

' =q/r', R’ =qv'/er', (34.6) 

while the observation potentials 

$ =q/r, A = gqv/cr, (38.7) 

if expressed through the advanced elements of motion, are to be written in the form 

(34.3) where v in the nominator of A is to be presented according to (34.4) through 

the advanced velocity and acceleration (as already said, v in the denominators of 

¢ and A is neither the advanced nor the observation velocity of the charge but some 

middle velocity). Thus official physics works(23) with some "hybrid" potentials which 
are neither pure advanced nor observation and for this reason it cannot obtain the 

radiation reaction intensity straightforwardly, as I do it in my theory considering 

v in the nominator of A as the observation velocity, so that ¢ and A in (34.3) are 

the exact observation potentials (when assuming that light has a Marinov-aether cha- 

racter of propagation). 

But why must we express the observation elements of motion in (34.3) - the charge- 

observer distance and the charge's velocity - through the advanced ones? The reason 

is not the hypothetical “propagation of interaction". I noticed already that as the 

quickest "information link" can be established by the help of light signals, one 

cannot calculate the intensities of a moving charge taking its position, velocity 

and acceleration at this very moment because there is no way to know them. At the 

reference point one can have information only about the advanced (or retarded)ele-
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ments of motion. 

There is, however, also another reason. As the radiated energy propagates with 

the velocity of light, then to calculate the radiated intensities at the reference 

point at the observation moment, one must operate with the advanced charge and cur- 

rent densities. Thus we are inpelled to express the observation elements of motion 

in (34.3) by the advanced ones in order to obtain right values for the radiated in- 

tensities. The mechanics of the right calculation when radiation and potential in- 

tensities are to be separated becomes very transparent and clear in Sect. 37. 

Let us now do the calculations. 

In formulas (34.1) we must differentiate ¢ and A with respect to the coordinates 

x,y,2 of the reference point and the time of observation t. But in the relations 

(34.3) the potentials are given as function of t' and only through the relation 

r'=c(t-t") (34.8) 

as composite functions of t. Now I shall write several relations which will be then 

used for the calculation of the composite derivatives. 

Having in mind the first relation (34.5), we write 

viv' o=-or'/at', (34.9) 

where r' is the vector of the advanced distance pointing from the charge to the re- 

ference point. 

Di fferentiating the equality r'2 = r'2 with respect to t', we obtain 

pr 30 e o (34.10) 
at' at! 

and using here (34.9), we find 

ar' _ _ ., 
3t n-.v. (34.11) 

Dif ferentiating (34.8) with respect to t and considering r' as a direct function 

of t', we find 

___T=c(1-__; (34.12) 

putting here (34.11), we obtain 

(34.13) 

Similarly, differentiating relation (34.8) with respect to r and taking into ac- 

count that t is the independent variable, we obtain 

L . L L] ] ar’ or’ ar'at' _ | c at : (34.14) 

ar' ar at' or ar 

putting here (34.11), we obtain 

at' _ n' 
or c(l-n'.v/c)’ (34.15)
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Finally we find the following relation (which will be used only for the calcula- 

tion of B) 

3,., PV _ 3, ., _ry 3,0 _ rlvat' r' - = r' - + r' - = 
ar! ) =gt R ¢ or (38.16) 

n._y_+(n.v-v2+r'.u) n' g_y_‘_(c_vz*r'.u‘ n' 

c ) c ¢ Te(1-n'.v/c) ¢ ¢ ¢ ‘c(l-n".v/c) 

Thus the electric intensity is to be calculated according to the formula (see 

(38.1)) 
.2 _13A__3 36 at' 13A at' = 2 -1 = . #.17 

or ar'  at'ar  Coat' ot ( ) 

If we substitute here the expressions (34.3) and take into account the relations 

(34.13) and (34.15), after some manipulations, the following final result can be ob- 

tained 

gr'x{(r' - r'v/c)xu} 

cz(r' - r‘.v/c)3 

2,2 ' E=-gq 1-v/c (rt - I 
_ v) + 
(r' - l".v/c)3 ¢ ) 

’ (34.18) 

where, according to (34.5), v is to be replaced by v', as it appears only in correc- 

tive terms, and u is to be replaced by u' + w'r'/c, as it apppears in non-corrective 

terms. 

One can easily check the equality of formulas (34.17) and (34.18) by reducing the 

first and the second to common denominators and by resolving all products to sums of 

single terms; then, after canceling mutually some terms in the nominator of formula 

(34.17), one sees that the remaining terms are equal to the terms in the nominator 

of formula (34.18). 

Remembering the formula for rotation from a product of a vector and a scalar 

(see p. 6), we have to calculate the magnetic intensity according to the formula 

B = rot qv = 9 rotv - 3 vxgrad——l————. (34.19) 
c(r' = r'.v/c) c(r' - r'.v/c) ¢ r' - r'.v/c 

Since we consider the velocity v as a function of r through the advanced time t', 

we shall have according to the rules for the differentiation of a composite function 

v _ at' 
t') = - —x—, . rotv(t') a3t x or (34.20) 

Substituting (34.15) into (34.20) and (34.20) into (34.19), we obtain 

B = 3 wrt ¢ —3  yxgrad(r' - r'.v/c). (34.21) 
cz(r‘ - r‘.\v/c)2 c(r' - r'.\v/c)2 

Putting here (34.16), we get . 

L] 2 ) 

B = 9 r'x-r'u+r"u-cv+v—v-—r'" . H.2 
Cz(r' - l".V/C)3 ( c C C V) ( 2)
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Forming the product n'xE (take E from (34.18)), we obtain an expression equal to 

the right side of (34.22) and, thus, we conclude 

B = n'xE. (34.23) 

Now substituting v and u from (34.5), we can present E in a form where only ad- 

vanced quantities are present 

£=qU 'Vlzlcz)("' —v/c), 32 n>dn’ - vi/epu'), g n'x(nhw'). (34.24) 
r'2(1 - n'.vlc)3 ¢ r'(l1 - n'.v'/c)3 3 

In the last term depending on the super-acceleration we have not taken into account 

the factors which will give terms, where ¢ will be in a power higher than 3 in the 

denominator, as such terms are neqligibly small. 

Substituting (34.24) into (34.23), we obtain the following expression for the 

magnetic intensity where only advanced quantities are present 

g--9(- v'2/c ey’ L nxlnix{(nt - v/eu' g e (34.25) 
¢ r‘z(l - n'.\v'-/c)3 2 r'(l - n'.v'/c)3 c3 

34.2. CALCULATION WITH THE RETARDED ELEMENTS OF MOTION. 

Entirely in the same way as in Sect. 34.1 we can calculate the electric and mag- 

netic intensities produced by a charge moving with acceleration, if expressing the 

observation elements of motion through the retarded ones. These calculations are 

done in Ref. 5. Here I shall give only the final formulas which are analogous to for- 

mulas (34.24) and (34.25) 

£ -q vy s vie), Lonxlnt s Vel L 3 pee(an),  (34.26) 

B = - % (l - V“Z/CZ)I'I”"V" . q2 nannnx{(nn + V"/C)’(u"}] - q3 n"xw", (34.27) 

l‘"z(l + n".v"/c)3 c rn(l + l’l".V"/C)3 C 

and the formulas for the observation potentiak expressed through the retarded ele- 

ments of motion, from which we proceed and which are analogical to formulas (34.3) 

6= —93 | A=—9¥ (34.28) 
r' + r".v/c c(r" + r".v/c) 

34.3. INTERPRETATION OF THE OBTAINED RESULTS. 

1 shall use the formulas written with the advanced elements of motion. 

The three terms in formulas (34.24) and (34.25) are called, respectively, POTEN- 

TIAL, RADIATION and RADIATION REACTION ELECTRIC and MAGNETIC INTENSITIES. 

Replacing again the advanced velocity by the observation velocity (see (34.5)), 

the potential electric intensity can be written 

1 - vZ/c2 
E = q ————————(r' - vr'/c), 34.29 
pot (r* - r‘.\v/c)3 ) ( )
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Using fig. 1, we can write 

r'-r'.v/c=r'-r'veos8'/c = {r2 -(r'vsine',c)Z}llz. 
(34,30 

According to the law of sines we have 

r'/sin(m - 8) = r/sing’, (34.31) 

so that we can write (34.30) in the form 

r'-r'.v/c = r(l - vzsinzelc)llz. (38.%2) 

Substituting this into (34.29) and putting there r = r' - vr'/c, we obtain 

2,2 
1-v/c r - n E =q 2q—. (34.33 

pot (1- vzsinzelcz):’/2 r3 re ) 

In the same way we obtain for the potential magnetic intensity 

2,2 ’ 
1-v/c vr - q vn B, =3 = Ly (34.3) 

I consider the difference between the "exact" and "non-exact" valuves of the po- 

tential electric and magnetic intensities as due only to the aether-Marinov charac- 

ter of light propagation. Thus I hardly believe that this can be an effect which 

can be physically observed. Conventional physics accepts that the "field" of a ra- 

pidly moving charge concentrates to a plane perpendicular to its motion, as for 

6 - 1/2 there is (1 - v2/c2)(1 - v2sin28/c2)3/2 & @ when v + c. I think that the 
effect is only computational and that it cannot be observed. Of course, the last 

word has the experiment. 

Thus the potential electric and magnetic intensities of an arbitrarily moving 

electric charge are determined by the distance from the charge to the reference 

point (being inversely proportional to the square of this distance) and (for B) by 

the velocity of the charge, both taken at the moment of observation. These intensi- 

ties are exactly equal to the electromgnetic intensities which the charge will ori- 

ginate at the reference point if the velocity is constant. 

The second terms on the right sides of (34.24) and (34.25) 

_ 9 n'x{(n' - v'/c):u'). B 
E 
rad = 2 r'(l-n'.v/c)3 

rad = n‘><£’,acl (34.35) 

determine the electric and magnetic intensities which the energy radiated by the 

charge originates at the reference point and we call them radiation electric and 

magnetic intensities. As the radiated energy propagates in space with the velocity 

of light c, we do not have to express here the advanced elements by the observation 

elemenets. Here the "directional" effects are no more computational and they can 

easily be observed(s). The radiation electric and magnetic intensities are determi- 

ned by the distance from the charge to the reference point (being inversely propor-
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tional to this distance) and by the acceleration of the charge taken at the advanceq 

moment. Thus a charge moving with a constant velocity does not originate radiation 

intensities. 

The third terms on the right sides of (34.24) and (34.25) 

Erea = 2—3 n'x(n'<w'), Bea = - % n'xw' = n‘><EIrea (34.3) 

determine the electric and magnetic intensities acting on the radiating charge it- 

self as a reaction to the photon radiation diminishing its velocity and consequently 

its kinetic energy with a quantity exactly equal to the quantity of energy radiated 

in the form of photons. 

The radiation intensities are those which appear at the reference point when the 

radiated photons cross this point; if there are electric charges at the reference 

point, they will come into motion “absorbing" the radiated energy. The radiation 

reaction intensities act on the radiating charge itself. For this reason I call the 

intensities (34.36) electric and magnetic intensities of radiation reaction. 

The electric and magnetic intensities of radiation reaction do not depend on the 

distance between charge and reference point and are determined by the charge's super- 

acceleration at the advanced moment, which, of course, can be taken equal to the su- 

per-acceleration at the observation moment. 

Thus we see that only the potential and radiation intensities have a character of 

field quantities, because when position, velocity and acceleration of the charge are 

given, these intensities are determined in all points of space, the former “momenta- 

rily", the latter with a time delay r'/c. The radiation reaction intensities are de- 

termined only for the space point where the radiating charge is located and act only 

on this charge. 

One may wonder that such precised, detailed and complicated information can be 

obtained with some simple mathematics from the extremely simple initial equations 

(34.3) and (34.1), so that here we have to admire the Divinity for His superb per- 

fectness and amazing abilities. 

Entirely in the same way, we can establish that the first terms in formulas (34.26) 

and (34.27) give, respectively, the potential electric and magnetic intensities 

(34.33) and (34.34). Thus we conclude that the calculation of the potential electric 

and magnetic intensities with the help of the advanced elements of motion as well as 

with the retarded elements of motion leads exactly to the same results. 

Let us now compare the second and third terms in formulas (34.24), (34.25) and in 

formulas (34.26), (34.27). If we assume that the advanced elements of motion do not 

differ too much from the retarded ones, i.e., if we assume 

r'=r=r, v =v¥" =, u' =u" = u, w' =w"=w, (34.37) 

then the electric intensity given by formulas (34.24) and (34.26) and the magnetic 

intens ity given by formulas (34.25) and (34.27) can be written as follows
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n nxgnxu[ + q nx{nxw 

E=E ot *Eag* Epre =q:2-+q 2r 3 

- Lo MXV_ _onxu e 
B = Bpot +*Badt Br‘es =-4a crl +4 2r g 3 ! (34.38) 

where the upper signs are obtained when the calculation is carried out by the help 

of the advanced elements of motion, and the lower signs are obtained when the calcu- 

lation is carried out by the help of the retarded elements of motion. 

As said above, the potential intensities are the same when calculated with the 

advanced and with the retarded elements of motion. 

The electric intensity of radiation Erad is the same when calculated with the ad- 

vanced and with the retarded elements of motion. However the magnetic intensity of 

radiation Brad is obtained with opposite sign if the retarded elements are used. 

Since we relate the intensities of radiation with the density of the energy flux 

(see Sect. 14) 

I = (c/4n)E (3%4.%9) 
rad* rad ’ 

we see that the electric and magnetic radiation intensities calculated with the ad- 

vanced elements of motion give an energy flux density directed from the charge to 

the reference point 
2 2 

(4n/c)1* = E; B! . = Cf“rz - fi-r—z-{(n.u)n - (n.n)ubx(nxu) = {nx(nxu) x (nxu) = 

2 2 2 
- —%—2{(n.u)nx(nxu) - ux(nxu)} = - —2—2{(n.u)2n - uzn} = J:‘-?-{uz - (n.u)zln. (34.40) 

cr cr cr 

while the electric and magnetic intensities of radiation calculated with the retar- 

ded elements of motion give an energy flux density directed from the reference point 

to the charge 2 
q (/)" = ElogBrag = = 3 2{02 - (n.u)in. (34.41) 

As W - (n.u)2 2 0, the flux (34.40) corresponds to the real electromagnetic wave 

radiated in the direction n, while the flux (34.41) corresponds to a wave propaga- 

ting in the direction -n. This second wave is fictitious, as it must exist if time 

has the property “reversibility". Thus only the calculation with the advanced ele- 

ments of motion corresponds to the real course of time (from the past to the future); 

the calculation with the retarded elements of motion corresponds to the negative 

course of time (from the future to the past). 

The intensities of radiation reaction do not depend on the distance between the 

charge and the reference point, and, thus, they have mathematical sense also for the 

point where the charge itself is placed. So we are impelled to make the conclusion 

that the electric and magnetic intensities of radiation reaction act on the radia- 

ting charge itself. Here we cannot speak about advanced and retarded moments, as 

both these moments coincide with the observation moment.
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However, as formulas (34.38) show, the intensities IEl,‘ea and Brea depend on the 

angle between the super-acceleration and the line connecting the charge with the re- 

ference point. Since the reference point for the radiation reaction is the radiating 

charge itself, we have to eliminate such an angular dependence by averaging over all 

directions. 

The averaging is to be performed in the following way: We plot the vectors of 

the intensities Erea obtained when the reference point covers densily a whole sphere 

around the charge, so that the angle between n and w takes all possible values. Now 

if we add geometrically all these vectors Eneai' i=1,2,.....N, whene N » o, and if 

we divide the resultant vector by the number N, we shall find the average value (we 

write the intensity of radiation reaction calculated with the advanced elements of 

motion) 

E = 
N N 

1 1 3 

rea =W ;L Erea, = ¥ L anx(npw)/cT. (34.42) 

Multiplying both sides of this equation by 4w, we get 

S N 
o = ]_ZEm n IE (34.43) 

by mking the transition N + «, and thus 

F 1 7 Zn nx (nxw q Eea=7 ] /0 3 sing dodp = J' ]{(n.-)n - wlsing de d¢, (34.44) 
A L T S ancd o o 

where ny = sinfcosé, ny = sindsing, ny; = cos6, 6 and ¢ being the zenith and azimuth 

angles of a spherical frame of reference with origin at the charge. 

Thus formula (34.44) can be written 

n21| 
. q 

]{(w sin cos¢ + wy sinBsing + wzcose)(sme coséX + sind snn¢y + 
E = 
rea 411C 00 

cosBZ - wlsing dode = 
q A}an i n2n 3 

w X snecos de d¢ + w0 0 b wyy]fsrn 8sin ¢d0d¢+ 

A T2n n2n 
"z j'fcos 6sinodédd - w [ [sineded) = 

0o 00 

q 0“ . Afl o\fl n —3(wxx [sinado + Wy ]sin39d6 +w? IZCOSZO sin8dd - w [2sin6de} = 4c 0 Yo 2o ) 

_q_ o R o I R L I B ( WX WY w2 - dw) - Y] (3w - 4w) = - ;{u. (34.45) 

The magnetic intensities of radiation reaction are the same when calculated with 

the help of the advanced and retarded elements of motion. But the averaging of the 

magnetic intensity of radiation reaction over all angles gives zero. Indeed,
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n 2n 
— 1 = = Q= nw sin6 de dd = 
Brea * 4In Brea’ " ancd ({ g ¢ 

n2n R a 
-9 _ [ ((w, singsing - w cos8)X + (w,cos6 - w, sin@ cosd)y + 

ancd 0 o 2 y 

(wysinecoscb - wxsinesino)flsine dode = 0. (38.46) 

Thus formulas (%.38) are to be written in the form 

2q E=E ,  +E_  +E_ =ql +qm™mu)_ 
pot rad rea ,.2 Ly 3c2 

- s - n_x! - 
B =Bpot *Brag® -0 or? 9 z (34.47) 

where we have taken these signs which correspond to the calculation with the advan- 

ced elements of motion. 

35. ELECTROMAGNETIC POTENTIALS OF PERIODIC SYSTEMS 

Let us suppose that the charge and current densities of the considered system of 

electric charges are simple periodic (i.e., monoperiodic, or trigonometric) functions 

of time 

Q- omcos(z—}‘t ta), d=d., cos(—t +a), (35.1) 

where 0 and ']max are the amplitudes of the charge and current densities and re- 

present then' values for times t = nT - (a/2m)T, where n is an integer. 

The quantity T is the PERIOD of the charge and current fluctuations; this is the 

time after whose expiration the charge and current densities obtain again the same 

values. The argument 2ut/T + a of the trigonometric function is the PHASE and the 

quantity a is the initial phase which usually, when considering the charge and cur- 

rent densities at a given space point only, can be taken equal to zero. The quantity 

= 2n/T is called (CIRCULAR) FREQUANCY and the quantity k = w/c = 2wcT is called 

(CIRCULAR) WAVE NUMBER. Such an electromagnetic SYSTEM is called MONOPERIODIC. 

It is mathematically more convenient to write the real trigonometric relations as 

complex exponential relations. Thus we can present the expressions (35.1) in the 

form 

Q 
Re(omaxei (wt +u.)) - Re{omxe-i(mt +u)}. 

3 = Retg et (W8 +0)) & pe(y  o7Tut 4]y, (35.2) 

where Re{ } means that we must take only the real part of the complex expression in 

the braces. The real parts of both expressions (35.2) are equal but usually the se- 

cond forms are used, i.e., those with the negative exponents.
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If we introduce the notations 

Q = Qaye O 3, = e (35.3) 

we can write (35.2), by omitting the sign Re{ }, in the form 

Q= Qe vt =gt (35.4) 
where the new amplitudes Q,, J, must be considered as complex numbers which become 

real only under the condition a = 0. The complex forms (35.2) are called SHORT EX- 

PONENTIAL FORMS and the conplex forms (35.4) are called LAPIDARY EXPONENTIAL FORMS. 

The LONG EXPONENTIAL FORMS are the following 

0= (V2)ge et 4 gl - (1/2){.1“)'3"""t + a%eluty, (35.5) 

where Q:,. J; are the quantities complex conjugated to Q,, J,. 

The use of the complex exponential forms turms out to be very convenient when we 

perform linear operations (say, adding, differentiation, integration) over the tri- 

gonometric functions. By using the complex exponential forms, all linear operations 

are to be applied not to trigonometric but to much simpler exponential expressions. 

However, when we have to perform non-linear operations (say, multiplication), we have 

always to use the long exponential forms. 

Let us find the electric and magnetic potentials originated by a monoperiodic sy- 

stem at an arbitrary reference point. 

Following the concept that the potential electric and magnetic intensities appear 

"momentarily" in whole space, while the radiated intensities propagate with the velo- 

city ¢, we shall bear in mind the following rules when calculating the intensities 

proceeding from the potentials: 

1) When we calculate the potential intensities, we have to use the observation 

potentials (refer to formula (34.7)). 

2) When we calculate the radiation intensities, we have to use the advanced po- 

tentials (refer to formula (34.6). 

3) When we calculate both the potential and radiation intensities, we have to use 

the advanced potentials (see formulas (10.3)) 

o:{gfir'ilfldv, A=£i(t—Rfl)-dv. (35.6) 

where R is the distance to the elementary volume dV, but in the final result we have 

to put ¢ = = in all non-radiation intensities if this c appears as a result of mani- 

pulation with advanced time. The execution of this program will become clear in Sect. 

Sect. 37. 

Thus if the charge and current densities at every elementary volume of the consi- 

dered system are simple periodic functions of time, with equal periods of fluctua- 

tions, the electric and magnetic potentials will be also sinple periodic functions 

of time with the same period and by putting (35.4) into (35.6) we obtain 
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i s _ s J o3 . a(t)=o e Ut < g ;fie it -KR)gy,  a(r) « et [2e (ut -kR) gy 

v v 

where 
QW kR _ o du kR °m'{i‘e dv, Aw-éfi-e v (%.8) 

are the complex amplitudes of the advanced electric and magnetic potentials. 

Let us now suppose that the charge and current densities are periodic,but not 

trigonometric, functions of time. As it is known, any periodic function can be pre- 

sented as a Fourier series, i.e., as a superposition of trigonometric functions with 

di fferent periods. We shall call such SYSTEMS POLYPERIODIC and their potentials will 

be superposition of potentials of monoperiodic systems. 

If the charge and current densities are arbitrary functions of time, then, as it 

is known, they can be presented by a Fourier integral as a superposition of monope- 

riodic functions and such will be also the potentials. We call such systems APERIO- 

DIC. 

36. THE POTENTIALS AT LARGE DISTANCES FROM THE GENERATING SYSTEM 

Let us consider the potentials generated by an electromagnetic system of arbitra- 

rily moving charges at large distances from the system, that is at distances which 

are large compared with the dimensions of the system. 

We choose (fig. 16) the origin 0 of the reference frame somewhere in the interior 

of the system of charges using the following notations: the radius vector of the re- 

ference point P is denoted by r and the unit vector along it by n; the radius vec- 

tor of the charges in the differential volume dV around point Q (where the charge 

and current densities are Q(t) and J(t), respectively) is denoted by r'; the radius 

vector from the the volume dV to the reference point P is denoted by R. 
<
t
 

Fig. 16. Electromagnetic system and a far lying reference point.
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Denoting by L the largest dimension of the system, we shall assume 

r>» L, 

and therefore 

(36.1) 

r>»r'. (36.2) 

From fig. 16 we have R = r - r', and thus we can write approximately 

R=|r-r'| = (r2 - 2r.r')1/2 =r(l- 2n.r'/r)1/2 =r-n.r', (36.3) 

and with larger inaccuracy 

R n
 

r. (36.4) 

In addition to the condition (36.1) we shall sometimes assume also that the shor- 

test period of oscillation T of the charge and current densities at the different 

elementary volumes of the system is much larger than the time in which light covers 

the largest dimension of the system, i.e., 

T>» L/c. (36.5) 

Let us now consider the advanced magnetic potential of a monoperiodic system. 

Substituting (36.3) into the second formula (35.8), we shall have at this approxima- 

tion 

1 o ik(r - n.r') A= —2 e v. 
w c{r-n.r‘ d 

(36.6) 

Taking into account assumption (36.2), we can neglect n.r' with respect to r in the 

denominator. However, this condition is not enough to make the same neglection in 

the exponent of the nominator. Indeed, we have 

Refelk(r-n.r')y | cos{gT—'(r -n.r' )} = cos[2n{L - L cos(n.r')}]. (36.7) 
cT cT T 

Thus we can neglect in this expression (r'/cT)cos(n.r') only if r'/cT < L/cT « 1, 

i.e., if also condition (36.5) is fulfilled. 

Thus assuming that only condition (36.1) is fulfilled but condition (36.5) is naot, 

we can write (36.6) in the form 
ikR ' 

e -n.r 
Aw “er {, J.e av. (36.8) 

Assuming that both conditions (36.1) and (36.5) are fulfilled, we can write (36.6) 

in the form 
ikr 

A=t Wl {dev. (36.9) 

These results can be applied to the first formula (35.8) and then to the electromg- 

netic potentials of polyperiodic and aperiodic systems. 

Let us consider nos the advanced magnetic potential of an arbitrary system written 

in the general form (35.6). Substituting (36.3) into (35.6), we shall have
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A=l [ d(t - r/c+m.r/c) 

v r-nar 
(%.10) 

(2
] 

Asspuring that only condition (36.1) is fulfilled but condition (36.5) is not, we can 

write 

A [ o, (%.11) 

where t' = t -r/c is the common advanced moment for the whole system, i.e., the ad- 

vanced moment taken with respect to the frame's origin. 

Expanding the integral in (36.11) as a power series of the smll quantity n.r'/c, 

we obtain 

A=alo) Ay o 6 J(t')dV + C—zl:&(n.r')fld{f—'b ..... . (3%.12) 

Since n is a constant unit vector and the vectors r' are integration variables which 

do not depend on time, we can write, taking into account that JdV is equal to the 

sum of the charges in the volume dV multiplied by their velocities 

A= 'fq.v (t) + 5 & 'Z‘q (e v (t') + enen, : (3%.13) 
croiop i i Zr ' 45 i i Y 

In zero approximation we have 

(©) L Yoy L ¢ §o . 8 
A cr i_z__lqi'i o iZlq,-r = o (3.14) 

where d is the advanced dipole moment of the system, and the point over the symbol 

signifies that time derivative is taken from this quantity. We remind that the ele- 

ments of motion on the right side of the last formulas are taken at the common ad- 

vanced moment. 

37. POTENTIAL FIELD AND RADIATION FIELD 

We established in Sect. 34 that the intensity field of an arbitrarily mving 

electric charge consists of two parts - potential part and radiation part. As formu- 

las (34.38) show, the potential electric and magnetic intensities are inversely pro- 

portional to the second power of the distance from the charge producing them, while 

the radiation electric and magnetic intensities are inversely proportional to the 

first power of this distance. Then we established that the potential electromagne- 

tic intensities "appear", as the potentials, instantly in whole space, i.e., they 

are immaterial, while the radiation electromagnetic intensities "propagate" with the 

velocity of light from the charge producing them to infinity; thus we have identified 

the radiation field of the charge by the photons emitted by it. 

As the field of a system of arbitrarily mving charges represents a superposition 

of the fields of anyone of these charges, the common intensity field of the whole sy- 

stem will also consist of a potential part and a radiation part.
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Let us now find the field of a system of charges at large distance from it. As 

mentioned in Sect. 35, for the calculation of the potential and radiation intensities 

we use the advanced potentials but thenin all non-radiation intensity terms we have 

to put ¢ = « everywhere where this "c" appears as a result of manipulation with ad- 

vanced time; non-radiation terms are all those which are not inversely proportional 

to the first power of the distance from the system to the reference point. The es- 

sence of this program will become clear in this section. 

For simplicity sake, we shall make a calculation for the potentials taken in zero 

approximation. Thus the advanced magnetic potential will be given by formula (36.14). 

The advanced electric potential can be calculated by substituting (36.14) into the 

equation of potential connection (8.8) 

div(d/cr) = - (1/c)ag/at. (37.1) 

After integration we can determine the electric potential 

¢ = - div(d/r) + Const, (37.2) 

where the constant of integration must have the form 

L n 
Const = = izlqi . (37.3) 

because if we put the dipole moment equal to zero, we shall have, at the assumption 

(36.1), 

I 
e
~
1
3
 

1 

1= 

where n is the number of the charges in the system. 

Let us assume that the sum of all charges in the system is zero. Then the advan- 

ced electric potential will have the form (37.2) with Const = 0. Putting this and 

(3.14) into the fundamental definition equalities (34.1), we obtain the following 

expressions for the electric and magnetic intensities 

E=grad(aivd) - L4 g d 
C2l‘ r 

rot=. 

O
 

(37.5) 

Now I shall calculate the monoperiodic amplitudes of the electric and magnetic 

intensities, assuming that the charge densities are monoperiodic functions of time; 

if they are polyperiodic or aperiodic functions of time, then we shall assume that 

a suitable expansion in a Fouruer series or Fourier integral is performed. 

The resultant advanced dipole moment of the system can be presented as a superpo- 

sition of the advanced monoperiodic moments of the form 

N -iwt' -iw(t -r/c) -iwt +ik 
d(t') = dwe = dme dwe . (37.6) 

We see that the velocity "c" which figures in the advanced time is included in the 

wave nunber k; hence in all non-radiation intensity terms of the final reslt we have 

to put k = 0.
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The electric and magnetic intensities produced by this monoperiodic dipole moment 

will also be periodic functions with the same frequency 

E(t) = Eme'iwt. B(t) = B e L, (37.7) 

Substituting (37.6) and (37.7) into the first equation (37.5) and dividing the 

equation obtained by the common factor exp(-iwt), we obtain for the monoperiodic am- 

plitude of the electric intensity with frequency w the following expression 

ikr 2 _ikr ikr 2 
_ - w” e _ e k™ ikr , 

Em = grad{dlv(—r— dm)} + = dw = grad(dm.grad—r—) v du = 
& T 

ikr 2 2 
k™ ik 

(dw.grad)gradeT te r dm = (dm.grad)l(% - r—l:i-)eikr r) + 5',- e"‘r dw 

@ (- 2k, 3 K dkikr Ak Ltk K e g 
w’ P34 23 2 Q3 w o r w 

k ik , 3, ikr ik _ 1, ikr k™ _ikr St S)e T (daant (5 -=)e d +—e  d = 
r 2 r o rl e3 wor w (37.8) 

k¢ _ikr _ _ ik ikr 1 ikr +e {dm (dm.n)n] = e {3(dm.n)n - dw] + e (3(dw.n)n - dw}. 
r r 

The amplitude of the radiation electric intensity is the one which is inversely 

proportional to the first power of r; thus we can write 

2 gk Eyrag = = €'k nx(d ). (37.9) 
wrad 

In all other terms we have to put k = 0 and these terms which remin will represent 

the anmplitude of the potential electric intensity. Thus we shall have 

E 
1 

wpot :3'{3("..,-")" -d). (37.10) 

I showed (see (31.12)) that this is the electric intensity generated by a static 

electric system with a total charge equal to zero and dipole moment (31.6) different 

from zero. The difference from the static system is only this that in the general 

dynami c monoperiodic case the potential electric intensity, according to formula 

(37.7) is a monoperiodic function of time. 

The second term on the right side of (37.8) appears only as a result of the com- 

putation and when putting k = 0 disappears, i.e., it has no physical meaning. 

Which are the errors of conventional physics which assumes that the interaction 

“propagates" with the velocity c? First it has to consider the second term on the 

right side of (37.8) as a real electric intensity. However nobody has measured such 

an intensity. Second, conventional physics considers the third term on the right 

side of (37.8) together with the factor eikr, i.e., it assumes that the potential
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electric intensity of a monoperiodic system has a "wave character". It is extremely 

easy to show experimentally that this assertion is not true, as I shall show beneath, 

Let us now see which are the radiation and potential magnetic intensities of a 

system with monoperiodic dipole moment different from zero. Substituting (37.6) and 

(37.7) into the second equation (37.5) and divinding the equation obtained by the 

common factor exp(-iwt), we obtain for the monoperiodic amplitude of the magnetic 

intensity with frequency w the following expression 

ikr ikr . .. W e ") e s w ik 1, ikr ~ Btl) 1 C I'Ot(-—‘r dm) 1 s dw'grad—r— =1 < dmx((? - r—z)e n} = 

- k? e‘kr d xn - ‘l. e‘kr d xn. (37'11) 

O el 9 

The amplitude of the radiation magnetic intensity is the one which is inversely 

proportional to the first power of r; thus we can write 

2 . 
_ k™ _ikr Bwrad = nde. (37.12) 

In the other term representing the amplitude of the potential magnetic intensity 

we have to put k = 0; so we obtain 

B (37.13) jw 
= —nxd. 

wpot crz w 

Having in mind (37.7) and (37.13), we can write the time depending potential mag- 

netic intensity corresponding to the frequency w in the form 

2w slet oo n L d g gtiety L0 gt Bpot(t) g nxd e C,.Zxdt(dwe ) crzxd( ) (37.14) 

Using now formula (36.14), we get 

__n __n J(t) _  J(t)xn Bot(t) = - TxA(t) = ?x{l e rdv = ‘], - dv. (37.15) 

Canceling the common factor exp(-iwt), we obtain for the amplitude of the potential 

magnetic intensity 
J,yn = w - |3wpot 6 2 dv. (37.16) 

This is the magnetic potential of a stationary (quasi-static) system of electric 
charges, as it can be immediately shown taking rotation from A = [JdV/cr. 

The radiation electric and magnetic intensities (37.9) and (37.12) can be imme- 

diately obtained from formulas (34.35), which we can write in the form 

Erad = ““(“*NC), Brad z - nx.A/C. (37.17) 

in which form they are valid if A is the advanced magnetic potential not only of a 

single charge but of a whole system. Indeed, if we put here (36.14), using (37.6)
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and(37.7), we easily obtain (37.9) and (37.12). 

As said above, conventional physics has to consider the last terms on the rigt 

sides of equations (37.8) and (37.11) together with the factor exp(ikr). This will 

give to the potential electric and magnetic intensities a "wave character”. A very 

easy experiment showing that this is not true, i.e., that the potential electromag- 

netic intensities have no "wave character" is the following one: Take two big coils 

set aside at a certain distance L and feeded by strong currents with the same high 

enough frequency, so that c/w < L/2n. Take another small coil closed shortly by an 

amperemeter in which current will be induced and so it will serve as an indicator 

of the potential electric field produced by the big coils.If mving the indicator 

coil between both powerful coils, we shall see that the induced current is the lar- 

gest when the smll coil is near the one or the other coil and gradually decreases, 

being the less at the middle point. If the potential magnetic field would have a 

"wave character", the induced current will not decrease gradually at the above mo- 

tion of the small coil, as both potential fields will interfere and the indicator 

has to show "nodes" and "anti-nodes" of the produced “"standing waves". Nobody no- 

where has observed such an effect. This effect, however, can be very easily observed 

exactly in the above way for the radiation electromagnetic field of two antennas. 

Now the big question is to be posed, how can we, by measuring a certain electric 

intensity E and a certain magnetic intensity B, discern which is potential and which 

is radiation (or which parts in E and B have potential and which radiation charac- 

ter). This is a very important question to which official physics cannot give a clear 

answer. 

The distinction which I make is the following: E and B are radiation elecric and 

magnetic intensities if and only if they are produced by the same charges, have equal 

magnitudes, are mutually perpendicular, and the vector ExB points away from the Sys- 

tem producing them. Note that the requirement "produced by the same charges"” is very 

important. So if we have a parallel plates condenser producing the electric intensi- 

ty E and a cylindrical current coil whose axis is perpendicular to E producing a 

magnetic intensity B such that B = E, then the requirement of calling them radiation 

electromagnetic intensities are fulfilled except the requirement to be produced by 

the same charges. Thus these electric and magnetic intensities are potential. 

The requirement “"produced by the same charges" in the above definition can be 

replaced by the following one: On a unit surface placed perpendicularly to the vec- 

tor ExB, a pressure must act equal to the pressure which a gas with mass density 

p = Ezldnc moving with velocity 1 cm/sec exerts on a wall placed perpendicularly to 

its flow. Thus the radiation electric and magnetic intensities must transfer energy 

(mass). 

1 sketched in fig. 17 another experiment which can demonstrate the substantial 

di fference between potential and radiation intensities. 

Let us have an oscillating circuit consisting of an induction coil L, a conden- 
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Fig. 17. Experiment demonstrating the momentary propagation of the 
potential magnetic intensity. 

ser C and a generator G which mintains undamped electromagnetic oscillations of the 

circuit. As it is known, the period of oscillations and the circular frequency are 

given by the formulas (see Sect. 54.2) 

T = 2nLe) V2, w = 2n/T = (L&) V2, (37.18) 

Let us suppose that the condenser and the generator are enclosed in a screen-box 

S, so that this oscillating circuit cannot radiate electromagnetic waves into free 

space, where only its potential magnetic field will exist. 

Let us put another induction coil L' at a distance R from the coil L. If coil L 

is long enough, we can assume that its potential magnetic intensity will be concen- 

trated in the coil pointing along its axis and having the value B = (4nnl/c)cos(wt), 

where n is the number of the windings on a unit of length and 1 is the amplitude of 

the alternating current flowing in the windings (see formula (18.28)). The magnetic 

potential of L at the space domain where L' is placed is A = (ZnnlrzlcR)cos(mt). 

where r is the radius of the coil L. The magnetic potential A is tangential to a cy- 

linder with raduis R having the same axis as the axis of coil L. According to the 

first formula (34.1), the electric intensity generated by the alternating current 

in L at the domain where L' is placed will be also tangential to the mentioned cy- 

linder with radius R and have the magnitude E = (Zunlrzw/cR)sin(mt). As in the win- 

dings' halves of L' which are nearer to L the induced electric intensity will be 

bigger than in the halves which are farther, a resultant sinusoidal tension will be 

induced in L'. This tension, however, is small (if L is infinitely long, it disap- 

pears), and it is better to make L' with a radius R encircling L. 

Let now suppose that the condition 
R >cT (37.19)
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is fulfilled. According to official physics, for the time of one perfod of the os- 

cillations the field of the magnetic potential propagating from coil L 

to coil L' cannot reach the latter. But, on the other hand, we know that at the be- 

ginning and the end of every half period the whole electromgnetic energy of the 

ciEcuit is concentrated in the electric field of the condenser C (suppose for sim 

plicity sake that the circuit L-C is without losses which, as a mtter of fact, are 

covered by the energy coming from the generator G). Thus we have to conclude that 

under the condition (37.19) no electromagnetic energy can be transferred from the 

circuit L-C to the coil L'. 

According to my primitive and childish concepts, the potential electric and mag- 

netic fields do not "propagate" with velocity c but "appear" instantly in whole 

space. Thus even at the condition (37.19) electromagnetic energy will be transferred 

from the circuit L-C to the circuit of coil L', and the anperemeter will show the 

existence of induction current. As the field in the outer space is potential, at 

open circuit of L' no energy will be absorbed from the potential field and the ge- 

nerator G will cover only the inevitable losses in the circuit L-C. However, if the 

ciruit of L' will be closed, induced current will flow in it, energy will be absor- 

bed and, because of the back induction of L' in L, the generator must increase its 

power, otherwise the energy consumed by L' will damp the oscillations in the L-C 

circuit. 

Let us now put the screen box S away and let us begin to make the distance be- 

tween the condenser's plates bigger and bigger, until the whole circuit will become 

a straight line with a condenser's plate at any of its ends and the coil L in the 

middle. If the coil will remin further very long and having the whole magnetic 

field inside, this system will again have only potential fields in the outer space 

and both fields (of the condenser and of the coil) will be electric. If, however, 

we shall begin to diminish the windings of the coil reducing it at the end to a 

straight wire, in the outer space will exist both the electric and magnetic inten- 

sities of the L-C circuit. The parts of them which will be with equal magnitudes, 

which will be mutually perpendicular and for which the product E>8 will point away 

from the system will be their radiation electric and mgnetic intensities. The coil 

L' will react both to the potential and radiation electric and magnetic intensities 

and current generated by their common action will flow in L'. 

Here it is to be mentioned that if the predominant part of the energy absorbed 

by L' will have a radiation character, then the fact whether L' is closed (absorbs 

energy) or open (does not absorb energy) has no influence on the generator G which 

covers only the inevitable losses in the circuit and the energy radiated in the 

form of electromagnetic waves (photons). 

A1l these experiments are enough simple for execution and their explanation is 

also extremely simple. Nevertheless official physics defends the wrong concept that 

also the potential electric and magnetic intensities, and even the electric and mag-
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netic potentials, "propagate" with the velocity of light. 

At the end of this section I should like to emphasize once more that the potential 

electric and magnetic intensities are determined by the values of the charge and cur- 

rent densities at the different elementary volumes of the system, while the radiation 

electric and mgnetic intensities are determined by the rate of change of these den- 

sities. 

38. DIPOLE RADIATION 

In zero approximation at large distances from the generating system the magnetic 

potential can be expressed by the dipole moment of the system according to formula 

(26.14). Substituting this expression for the advanced magnetic potential into the 

general formula (37.17) for the radiated electric and magnetic intensities, we obtain 

Erpg = o MX(nxd), B, = :;—r dn. (38.1) 

The radiation described by the formulas (38.1) is called DIPOLE RADIATION because 

the electric and magnetic radiation intensities depend only on the dipole moment of 

the system (on its second time derivative). 

As already said, the radiated electromagnetic waves (photons) are carrying away 

a definite amount of energy from the radiating system. The intensity of the radia- 

ted energy flux is given by formula (34.39). Taking into account the relations (see 

formulas (34.35)) Brad = "xErad’ Erad'" = 0, Erad = Brad' we can write 

_C c n < 2 
I= an Erend"srad an Erad x(nx Erad) - 411 rad" an r-adn (38.2) 

Taking into account our third axiom, we have to understand the above equation 

always in the following form 
¢ T/2 2 c T/2 

I= T }' (E d/4n)dt = T [ (Brad/t‘ln)dt. (38.3) 

where T is the period of the electromagnetic wave (the period of the photon). Indeed, 

according to the third axiom, only when time equal to the period of a particle has 

elapsed can we affirm that the particle has crossed a given surface. For times shor- 

ter than the period we cannot say on which side of the surface is the particle. 

It is more convenient to express I by Byraq (see the right-hand expression in 

(38.2)) as Bpa4 can be expressed by d more simply than Epraqd (see (38.1)). 

The energy flux of radiation dP in a unit of time into the element of a solid 

angle dit is defined as the amount of energy passing in a unit of time through the 

element dS = 2o of the spherical surface with center at the frame's origin and 

radius r (see fig. 16). This quantity is clearly equal to the intensity of the ener- 

@ flux density 1 multiplied by dS, so that using (38.1) we obtain 

dP = 165 = (c/an)88rPda = (1/4nc3)(nwd)2da. (38.4)
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The whole energy flux can be obtained if we integrate (38.4) over a sphere con- 

taining the radiating system at its center. Let us introduce spherical frame of re- 

ference with polar axis along the vector d. Let the zenith angle and the azimuth 

angle of the unit vector n be 6 and ¢; 6 is consequently the angle between dandn. 

As dQ = sin® dod¢, 
m2n 

jifl%-cn | I-—d-z—351n39 dwds = 2= &. (38.5) 
4n 4nc 0 o0 4mc 3c 

1f we have just one charge moving in an external field, we shall have, keeping 

in mind (31.6), d - r = qu, so that the total energy radiated in a unit of time by 

this charge will be 

P= —‘L 2, (3.6) 
3c 

We note that a system of particles, for which the ratio of charge to mass is the 

same, cannot radiate (by dipole radiation). Indeed, for such a system 

n n n 
d-= .Zl(qi/m'i)"'i'i = Const'.jlrniri = Const R.):'I"i' (38.7) 

1= 1= i= 

where Const is the charge-to-mass ratio common for all charges and R is the radius 

vector of the center of mass of the system. As the center of mass moves uniformly, 

its acceleration is zero and consequently the second time derivative of d is zero, 

too. 

If the particle performs such a mtion that its dipole moment is a simple perio- 

dic function of time with a period T = 2n/w, we shall have 

d(t) = gt (38.8) 
where dw is the complex amplitude of the dipole moment (which, at a suitable choice 

of the initial moment, can be taken real and equal to the maximum value of the di- 

pole moment - see Sect. 35). 

Hence, substituting (38.8) into (38.5), we obtain for the total energy flux 

d 2. P =L i) = L e, 
33 33 (38.9) 

39. RADIATION REACTION 

As formulas (34.47) show, the radiation reaction electric and mgnetic intensi- 

ties are as follows 
3 - E oy = - (20/3°W, B, =0 (39.1) 

Let us calculate the change of the energy of a system of n charges due only to 

the action of the electric intensities of radiation reaction Epga; Of the various 

charges. On each charge of the system the “kinetic" force


