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(26.5), (26.6), (26.7) and (26.8) and it is equal to zero

(Fondx * (Fp)y * (fpg), + (fgp), = (147¢%)1 = 0. (26.9)

26.2 CALCULATION WITH NICOLAEV'S FORMULA.

To obtain the prediction of Nicolaev's formula for the force with which the cur-
rent in the open loop DEFOA acts on the current in the straight wire BC, at the as-
sumption that the wires OA and DE are very long, we have to put in (26.1) {fOA)x =0
and the force which will remain to act on the wire BC will be only the force
(f‘DE)x given by formula (26.2). Thus the wire BC will move to the left, as Nicola-
ev first has observed (see Sect. 58.4). 1 repeated Nicolaev's experiment in a very
impressive variation where a continuous rotation could be observed (see Sect. 59).

26.3. CALCULATION WITH GRASSMANN'S FORMULA.

As according to Grassmann's formula (24.4) the forces acting on a current ele-

ment must be always perpendicular to the latter, no longitudinal force can act on
the current wire BC.

26.4. CALCULATION WITH AMPERE'S FORMULA.

Here also as above the force acting on BC will be determined by the action of
the currents in the wires OA and DE. Ampere's formula (24.5) gives for the x-compo-
nent of the force (equal to the total force) with which the current in OA acts on
the current in BC, by denoting dr = dx, dr' = dx', r = x' + x,

L
(12/c%) dx/(x +a) =
0

CA L e
(foa)y = (lzlcz)é ‘J;drdr'/r2 = (lzlcz)jdx Jdx'/(x' + a + x)2
0o o

(127¢¢)In(1 + La). (26.10)

The forces with which the current elements along the wire DE act on the current
elements along the wire BC are directed along the vector distance r. We have to con-
sider only the components parallel to BC. The x-component of the force dfpp with
which the current element |'dr' along the wire DE acts on the current element Idr
along the wire BC will be obtained by multiplying dfpg by -dr/dr, and denoting
dr = dx, dr' =dy, r = {(x+a)2 + y2}1/2’ so that for the net force we obtain

2 CE L w
I 3(r.dr){(r.dr') r.(-dr) _ _ ,.2,2 2 y dy _
f 5 — - = I/ 3 d =
(fpe), ¥, g g i . (1°/c )g (x+a)“dx £ () + 2572
L
- (1273 [ax/ (x+a) = - (127 )n(1 + L/a). (26.11)
0

Comparing formulas (26.10) and (26.11), we see that according to Ampere's formula
there is no force acting on the wire BC.

Thus the only formula which predicts motion of the wire BC in the rectangular
loop ODEF remains Nicolaev's formula.
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27. INTERACTION BETWEEN CIRCULAR, RADIAL AND AXIAL CURRENTS

It is highly important to know the forces of interaction between a circular cur-
rent, on one side, and radial and axial currents, on the other side. To the best of
my knowledge, nobody has calculated these forces, even with the wrong Grassmann and
Ampere formulas.

Let us consider the most simple circuit consisting of a circular current with ra-
dius R and a rectangular current acde perpendicular to it with its corner at the
center of the circular current (fig. 9). This case is presented also in fig. 10
where two sliding contacts are put, so that one can observe the appearing forces,
as done by Sigeﬂovz1 (I call the experiment shown in fig. 10 the FIRST SIGALOV'S
EXPERIMENT). In the single circuit of fig. 10 the current is I, in the two circuits
of fig. 9 the currents can be different, | and I'.

I shall calculate the torques (moment of forces) about the axis ac (the z-axis)
appearing because of the action:

1. of the internal radial current on the circular current,

2. of the circular current on the internal radial current,

3. of the external radial current on the circular current,

4. of the circular current on the external radial current,

5. of the axial current on the circular current.

As in fig. 9 there are no colinear current elements, both Whittaker's and Nicola-
ev's formulas will lead to the same or to very similar results. I shall make all cal-
culations in this section according to Whittaker's formula.

For brevity, in all formulas of this section the factor II'/(:2 will be omitted.

C — d

Fig. 9. Rectangular and circular circuits.



- 94 -

27.1. ACTION OF THE INTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT.

The unit vector along the x-axis is denoted by X, the unit vector along the polar
radius is denoted by p, the unit vector which is perpendicular to the polar radius
and corresponds to the polar angle ¢ is denoted by $, and the unit vector along the
z-axis is denoted by z. The circular and interna) radial currents are shown in fig.
11.

The elementary moment of force about the z-axis appearing as a result of the ac-
tion of the radial current element dr' on the circular current element dr will be

dM = Roxdf, (27.1)
so that by substituting (24.3) into (27.1) we obtain
M = (R/rOp-fcosy (-R) + cosy'd - sine(r/r))drdr'. (27.2)
As
r/r = singp + cosy, dr = Rdg, dr' =dx, pxX = - sing2, px¢ =2, (27.3)
we obtain 2 9 .
dM = (R"/r")cosy'dx doz. (27.4)

We have from fig. 11
siny' = Rsing/r, rz = xz - 2xRcos¢ + R2, (27.5)

so that by putting (27.5) into (27.4) we obtain for the component of the elementary

torque about the z-axis

_ R2 stin2¢
dM = —(1 - ———*)
2z P

1/2

R(x - Rcos¢) dxdo (27.6)

dxdp = .
(x2 - 2xRcos¢ + Ft2)3/2

For x > Rcos¢ the torque is positive and for x < Rcos¢ negative (see fig. 11).
To obtain the torque M acting on the whole circular current, we have to integrate
formula (27.6) for x in the limits from O to R and for ¢ in the limits from O to 2m.

—— C

Fig. 10. Sigalov's first experiment.
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Both integrations can easily be carried out in a final form, however at the point

x = R, & = 0 there is a singularity: the distance between dr and dr' becomes equal
to zero. Thus we shall write the solution in the following form

21 R 2.9 . 2n 2n
M= [dp 2“ (x R°°S¢%d’; - RO 4 [Rds - - AL 2em. (27.7)
0 o0 (x* -2xRcos¢ +R%) / o 2sin(¢/2) o a

27.2. ACTION OF THE CIRCULAR CURRENT ON THE INTERNAL RADIAL CURRENT.

To find the torque with which the circular current acts on the radial current,
we change the directions of the currents I and [' to the opposite. In such a case
the acting forces remain the same, but we shall have now the angles ¢ and ¢' less
than w/2 and this will facilitate the matemantics (fig. 12).

The elementary torque about the z-axis appearing as a result of the action of
the circular current element dr' on the radial current element dr will be

dM = xRxdf, ' (27.8)
so that by substituting (27.2) into (27.8) we obtain
M = (x/r8)x{cosy(-§) + cosp'® - sing(r/r)}drdr'. (21.9)

As r/r = - siny'p - cosy'$, dr = dx, dr' = Rdy, Xx§ = cosdZ, %Xxp = sin¢z, we
obtain

dM = (x/r'z){- cos¢cosy + sing(sinpsing' + cos¢cosy')z =

(x/rz)(- cosdcosy + singsing)z, (27.10)
as ¢ - ' =n/2 - .

Fig. 11. Action of intermal radial current on circular current.
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Fig. 12. Action of circular current on intermal radial current.
We have from fig. 12

cosy = (x - Rcosd)/r, siny = Rsiny/r, r2 = R2 - 2xRcos¢ + xz (27.11)

so that by putting (27.11) into (27.10) we obtain for the z-component of the torque
dM = (xR/ro)icose(Reose - x) + Rsinoldxdy = —XR(R - xc0s9) ""g‘" 5.
(RZ - 2xRcos¢ + x )3/

As R > xcos¢, the torque is directed along the z-axis and this leads to anti-
clockwise rotation.

(27.12)

To obtain the torque acting on the whole internal radial current, we have to in-
tegrate formula (27.12) for x in the limits from O to R and for ¢ in the limits from

0 to 2n. I could not evaluate the integral in elementary functions and perhaps this

is not possible (the mathematicians have the last word). As the integral for x = R,
¢ = 0, has singularity, [ shall write it as a positive number B which is infinitely
large

2n R
0 0 (R2 - 2xRcose + x2)3/2

27.3. ACTION OF THE EXTERNAL RADIAL CURRENT ON THE CIRCULAR CURRENT.

The elementary torque about the z-axis appearing as a result of the action of the
external radial current element dr' on the circular current element dr will be given
by formula (27.1), so that by substituting (24.3) into (27.1) we obtain (fig. 13)

dM = (erz)Bx{coswt-i) + cosy'd - sing(r/r)).

(27.14)
As r/r = singp + cosyd, dr = Rdp, dr' = dx,

o)

AN A - ~ ”~ .
pxX = - sindZ, px@ = z, we obtain
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Fig. 13. Action of external radial current on circular current.

M = (R%/r%)cosy’ dxdsz. (27.15)

We have from fig. 13

siny' = Rsing/r, rz = xz - 2xRcos¢ + Rz. (27.16)

so that by putting (27.16) into (27.15) we obtain for the z-component of the elemen-

tary torque

R stin2¢)l/2 dxdo - R(x - Rcoso) dxdo (27.17)

dM = —(1 - —— :
re r (x2 - 2xRcos¢ + RZ)3/2

As x > Rcos¢, the torque is directed along the z-axis and thus leads to anti-

clockwise rotation.
To obtain the torque acting on the whole circular current, we have to integrate

formula (27.17) and we obtain

n @ 2 on
M= [do [ g (x Rcosqt-)dx2 75 - f.!d:p - piptant (27.18)
R (x® - 2xRcos¢ + R%) 02sin(¢/2) tan0

0

Taking into account formulas (27.7) and (27.18), we see that the torque which the
internal and external radial currents exertson the circular current is finite and

equal to 2nR.

27.4. ACTION OF THE CIRCULAR CURRENT ON THE EXTERNAL RADIAL CURRENT.
Here again as in Sect. 27.2 we exchange the directions of the circular and radial

currents to the opposite to have the angles ¢ and ¢' less than /2.
The elementary torque about the z-axis appearing as a result of the action of the
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circular current element dr' on the radial current element dr can be obtained exact-
ly in the same way as in Sect. 27.2 (fig. 12 can be used by considering the element
dr outside the circle). For the z-component of the acting elementary torque we shall
obtain formula (27.12).

For R > xcos¢ the torque is positive and for R < xcosg the torque is negative.
As for x near to the circle, where the acting force is the largest, we have
R « xcos¢, [ shall write the torque as a negative number -D, where D, because of the
appearing sinqularity, is infinitely larg

2(R - 0s¢) dxd¢
fd¢f RAR - xc - -D. (27.19)
0 (R2 - 2xRcos¢ + x2)3/2

27.5. ACTION OF THE AXIAL CURRENT ON THE CIRCULAR CURRENT.

Before beginning with the calculation, let me note that the torque exerted by the
circular current on the axial current obviously is zero as the levers of the forces
are null (see fig. 9).

The elementary torque about the z-axis appearing as a result of the action of
the axial current element dr' on the circular current element dr will be given by
formula (27.1). Putting in it (24.3) we obtain

= (Rzlrz)ﬁxcosw'sdrdr‘. (27.20)

We have from fig. 9

2 2 2

cosy' = - 2z/r, r- =2+ R, (27.21)

so that by putting (27.21)into (27.20) we obtain

2

___Rz dzd¢
dM (22 : R2)3/2. (27.22)

The elementary torque is obviously negative. For the integral torque we obtain

2n 2n

R z dz
- [d¢ [ Rd¢ = - 2nR. (27.23)
o o (z + R2)3/2 I

The torque with which the rectangular current acts on the circular current will
be the sum of the torques (27.7), (27.18) and (27.23) and is null as it must be.

The torque with which the circular current acts on the rectangular current will
be given by the sum of the torques (27.13) and (27.19). As it also must be null, we
shall have B = D.

The torque acting on the moving part of Sigalov's experiment (fig. 10) will be
the sum of the torques (27.7), (27.13), (27.18) and (27.23). Thus it will be equal
to the positive number B. As a matter of fact Sigalov's experiment is a simplified
variation of the cemented Barlow disk (see Sect. 47). If the sliding contact will
be not at point E but at point F and the circular current will not rotate, Sigalov's
experiment will be a simplified variation of the uncemented Barlow disk. As the net
torque on the current in the circular wire is null,its rest or rotation is immaterial.
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28. THE ROTATING AMPERE BRIDGE (RAB)

The drawing of the circuit which I have called ROTATING AMPERE BRIDGE (RAB) is
presented in fig. 14. Current I comes from "infinity" along the upper axial wire
PO, flows along the upper rotating and propulsive arms OA and AB with lengths R,
along the shoulder BB', then along the lower propulsive and rotating arms B'A' and
A'0' and along the lower axial wire 0'P' goes to “infinity".

Easily can be seen, taking into account Whittaker's formula (24.3), that the net
torques about the z-axis produced by the interaction of the currents in the follow-
ing wires are null: (i) axial wires and rotating arms, (ii) axial wires and shoul-
der, (iii) shoulder and propulsive arms, (v) action of propulsive arms on axial
wires, (vi) action of shoulder on rotating arms.

Di fferent from zero are only the torques due: (1) to the action of the currents
in the axial wires on the currents in the propulsive arms, (ii) to the interaction
of the currents in the rotating and propulsive arms, and (iii) to the action of the
currents in the rotating arms on the current in the shoulder.

Now I shall calculate the respective torques, omitting also in this section to
write the factor Izlc2 in the formulas.

A or

YA

0' A'

Bl

Pl

Fig. 14. the rotating Ampere bridge.
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28.1. ACTION OF THE AXIAL CURRENT ON THE PROPULSIVE ARM CURRENT.

A current element Idr' along the axial wire PO acts on a current element Idr
along the propulsive arm AB, to which the vector distance is r, with the elemental
force generating torque about the z-axis

df = (r.dr')dr/r3 = cos(r.dr')drdr'i/r2 = 2 dxdzﬁ/(x2 + 22 +R2)3/2. (28.1)
The moment of this force about the z-axis will be
M = (ﬁﬂﬁ)xzdxdzi/(xz + 22 + RZ):‘V2 = - de:-:dyi"/(x2 + 22 + R2)3/2‘ (28.2)
For the z-component of the integral torque we obtain, taking AB = R, PO = =,
Re R
M=- [ [ Redxdz/(x° + 22 + R)¥2 - R [(«€ + R®) Y24y = - RArsinhl. (28.3)
00 ]

If the shoulder BB' is long enough, we can neglect the torque produced by the
action of the axial wire current PO on the current in the propulsive arm B'A'. Thus
taking into account also the torque due to the action of the current 0'P' on the
current B'A', we shall obtain for the z-component of the net torque

M ot = - 2RArsinhl = - 1.7628R. (28.4)

28.2. INTERACTION BETWEEN THE ROTATING ARM CURRENT AND THE PROPULSIVE ARM CURRENT.
Let us calculate first the force with which a current element dr' of the rota-
ting arm 0A acts on a current element dr of the propulsive arm AB, denoting by r
the vector distance from dr' to dr (r is not shown in fig. 14). According to for-
mula (24.3), in which we exchange the places of the first two terms, we shall have

df = {(r.dr)dr’ + (r.dr')dr}/r3 = O + (R-y)X}dxdy/ro. (28.5)

The moment of this force about the z-axis will be, if denoting by a the vector
distance from the axis to the element dr and by a the angle concluded between the
vector a and the y-axis,

dM = ax{xy + (R-y)i}dxdy/r3 = af{xsina - (R-y)cosu}idxdy/r3 = (28.6)

2 2}3/2.

(x - (R-y)R)Zdxdy/{x° + (R-y) (28.6)

Let us now calculate the force with which the current element dr of the propul-
sive arm AB acts on the current element dr' of the rotating arm OA, denoting also
in this calculation by r the vector distance from dr' to dr,

df' = (- (r.dr')dr - (r.dr)dr'}/rS = (- (R-y)X - x§}dxdy/r>. (28.7)
The moment of this force about the z-axis will be
M = ygx{ -(R-y)X - x7)dxdy/r> = y(R-y)Zdxdy/ X% + (R-y)2)3/2, (28.8)

The net torque due to the interaction of the current elements in the rotating
and propulsive arms will be the sum of the torques (28.6) and (28.8)

M=M= (- (Ry)DiEaxdy/ OF 4 (Ry)P1 Y2, (28.9)
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The integral torque produced by the interaction of the currents in the rotating
and propulsive arms will be obtained by integrating the elemental tormque (28.9) for
x in the Timits from O to R and for y in the limits from 0 to R. If making then the
substitution R-y = Y, dx = - dY, we obtain for the z-component of the net torque

2)312 ¢

RR R R
Met = | I{x2 --(R--J.r)‘?}dxd:,r/{:x2 +(R-y)2}3/2 = | [(x2 - Yz)dde/(xz-ﬂ
°0 00 (28.10)

Thus the net torque due to interaction of the currents in the rotating and

propulsive arms is null.

28.3. ACTION OF THE ROTATING ARM CURRENT ON THE SHOULDER CURRENT.
A current element dr' along the rotating arm OA acts on a current element dr of
the shoulder BB', to which the vector distance is r, with the elemental torque

dM = Rxxdf, (28.11)

in which we have to put for the elemental force, denbting by z the distance from B

to dr,
df = (r.dr)dr'/rS = (z2/r)y/rs. (28.12)
Thus we obtain for the z-component of the whole torque, taking BB' = =,
R = R
Rz dz dy .
M= [dy [ = | - = RArsinhl. (28.12)
0o o {(R-y)2 +R2 +22}3/2 0 {R2 + (R-y)zllf2

The same torque will be produced by the action of the current in the rotating
arm A'0' on the current in the shoulder BB'. Thus for the z-component of the net

torque acting on the current in the shoulder we obtain

Mnet = 2RArsinhl = 1.7628R. (28.13)

Comparing formulas (28.4) and (28.13) we see that the net torque due to the in-

teraction of all currents in the rotating Ampere bridge is null.
One can easily see that if the length of the shoulder will be not considered as

very long, the net torque acting on RAB will be again zero. In such a case the net
torque acting on the shoulder will be less than (28.13) but besides the negative

torque (28.4) there will be a positive torque acting on the current AB in the pro-
pulsive arm due to the lower axial current 0'P'. The relevant calculation gives for

the net torque again null result.
As all current elements in RAB are mutually perpendicular, the calculation with

Nicolaev's formula will lead to the same result.
Easily can be calculated(‘?z) that also according to Grassmann's formula the

torque in RAB must be null. .
Ampere's formula which preserves Newton's third law, of course, will lead to a

null torque in RAB.
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29. ELECTROMOTORS DRIVEN BY VECTOR AND SCALAR MAGNETIC INTENSITIES

The vector and scalar magnetic intensities are defined, respectively, by the se-
cond and third formulas (8.6).

If not Whittaker's formula (24.3) but Nicolaev's formula (24.12) will be the
right one, the scalar magnetic intensity is to be written not in the simple Whitta-
ker's form (8.6) but in the complicated Nicolaev's form (24.14). Without precising
the exact mathematical expression of the scalar magnetic intensity S through the
magnetic potential A (for the time being when not enough experimental evidence is
accumulated), I shall call scalar magnetic intensity this potential force which acts
along the test current element and vector magnetic intensity this one which acts at
right angles to the test current element. When it will be necessary, I shall present
the scalar magnetic intensity preferably in its Whittaker's form.

The ELECTROMAGNETIC MOTORS which are driven by the vector magnetic intensity B
(such are all electromotors built by humanity in two centuries of electromagnetism)
will be called B-MOTORS and the electromagnetic motors which are driven by the sca-
lar magnetic intensity S (see Sects.58 -60) will be called S-MOTORS.

Here 1 shall present the most simple S-motor which still I have not constructed,
but | have no doubts that it would not work in the predicted way.

We have found in Sect. 27.5 that the torque with which an axial current acts on
a circular current (see fig. 9) is given by formula (27.23). As in all formulas of
Sect. 27, for brevity's sake, the common factor II'/c2 was omitted, let us write
again this formula in its complete form: Thus the z-component of the torque with
which a vertical positive current I' acts on a current [ flowing along a circle
with radius R in the positive (anti-clockwise) direction is

M = - 2nl1°'R/CP. (29.1)
Let us then construct our S-motor in the following way (fig. 15):

R condenser C with a big capacitance is charged to a high potential. The vertical
wire ac, which at its lower end is connected with a big metal sphere, can make suc-
cessively contact with the positive and negative electrodes of the condenser C. If
this contact will be made with a frequency equal to the own frequency of Oscillations
of the suspended on strings permenent ring magnet, this magnet can be set in oscil-
lations. Indeed, the permanent ring magnet can be presented as two circular currents,
1, with radii equal to the internal and external radii of the ring magnet, Rint and
Rext‘ The torque acting on these circular currents, for the moment shown in the fi-
gure when electrons fly from the left plate of the condenser downwards to the big me-
tal sphere (i.e., when the current is pointing upwards) at the indicated directions
of the currents in the magnet (on the internal periphery the current is flowing clock-

wise and on the external periphery anti-clockwise) will be

Y
Mnet. = Mint. + "ext = (21111 /C )(Rint - Rext). (2902)
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Thus the motion of the magnet at this laps of time will be negative (clock-wise;.
At the next laps of time, when the metal sphere will be connected to the right, po-
sitive electrode of the big condenser, the motion of the magnet will be positive.

Let now exchange the ring magnet in fig. 15 by a circular wire and let insert in
it a source of alternating electric tension with frequency v. If the frequency with
which the wire ac is connected successively to the negative and positive electrodes
of the condenser C will be also v, the circular current wire will begin to rotate.
As the moment of force with which the circular current wire acts on the vertical
current wire is zero, this experiment will present a patent violation of the angular
momentum conservation law.

It is interesting to note that the scalar magnetic intensity with which the elec-
tromagnetic system consisting of the driving big condenser C, the wire ca and the
big "storage" sphere acts on the circular current can be calculated either as a mg-
netic effect by the help of the last equation (8.6) or as an electric effect by the
help of equation (8.10). The force on the circular current will act in the direction
of the current when divA < 0, i.e., 3¢/3t > 0, or against the direction of the cur-
rent when divA > 0, i.e., 3%/3t < 0.

These childichaly simple and clear effects are absolutely unknown to offial phy-
S1CS.

+ +t ¥+ 4+ &

Fig. ¢

Fig. 15. S-motor with interrupted current.
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Let us make these two types of calculation for the experiment shown in fig. 15,
mking use also of fig. 9. We suppose that the current wire ac is infinitely long
and that a constant current [' flows along it from point a (where there is a big
"storage" sphere charged with positive charges) to point ¢ (where there is another

“storage" sphere charged with negative charges). The magnetic potential generated
by the current I' along the circular loop with radius R will be

A= [1'dzi/cr = (1'/c)f dz3/ (RS + 2%)Y/2, (29.3)
0 0

The scalar magnetic intensity generated by this vertical current along the cir-
cular loop will be

S = - divA = - 3A/Ar = - (1'/c)[zdz/(RE +22)%/% = - T'/cR. (29.4)
0

We shall obtain the same value for the scalar magnetic intensity, if calculating
it according to formula (8.10). To make the calculation more simple, let calculate
S in the equatorial plane of the storage sphere at a distance R from its center.
The potential of the charges q on the sphere at a distance R from the center is
¢ = q/R, independently of the radius of the sphere(s). When the current extracting

charges from the storage sphere is I', for a time At the extracted charges will be
1'At and we shall have for the scalar magnetic intensity

S = 3d/cat = (1/c)ad/At = {9 - ‘;ﬁ:)/R - 9/R _ _ 1'/cR, (29.5)

what is exactly the value (29.4).

Let me note that yet Grassmann(lg) pointed out that the observation of the action

of open currents on other currents (current elements) is of a high inportance. For
my big surprise, to the best of my knowledge, no such quantitative observations hawe

been done in the 150 years after Grassmann. Here | should like to cite some remar-
kable lines of Grassnann:tla) (p. 14)

Oberhaupt ist klar, daB eine Entscheidung zwischen beiden Theorien (Ampere's
and Grassmann's theories), da die Wirkung, welche geschlofene Strome iiben,
nach beiden dieselbe ist, nur moglich ist, wenn man die Wirkung betrachtet,
welche ein begranzter Strom iibt... Der begridnzte Strom wiirde daher so her-
vorzurufen sein, daB man zuerst etwa zwei Kugeln mit entgegengesetzter Elek-
trizitat miglichst stark lude, und sie dann nach der Ladung (nicht wahrend
derselben) in leitende Verbindung brachte. Dann hdatte man die Wirkung dieses
begranzten Stromes auf irgend einen elektrischen Strom oder besser auf einen

Magneten zu beobachten, und die Anordnung dabei so zu treffen, daB die Wirkun-
gen nach beiden Theorien mdglichst verschieden erfolgen.

1f someone had followed Grassmann's advice and had done the experiment shown in

fig. 15, one would had observed the rotation of circular current many and many years
ag, and the wrong dogma that the magnetic force acting on a current element must

be always at right angles to the element would not surviwe all these years. Neither
Maxwell's dogma about the closed currents could then survive.

Now | shall reveal a very interesting aspect of the S-motors, namely that not
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back but forth tension is induced at their rotation.
[f the current along the circular loop is flowing anti-clockwise (as in fig. 9,

the forces acting on the current conducting charges, according to the fourth formula
(21.1) - as well as according to formula (24.15) - will be directed against their
velocities, so that the circular wire will begin to rotate in a clockwise direction.
At this motion, all positive charges in the wire which can become current conducting
charges will obtain a low convection velocity in a clock-wise direction. The scalar
magnetic intensity (29.4) will begin to act on these convected charges,according to
the fourth formula (21.1), with an electromotive force opposite to their velocity,
i.e., with a force pointing along the direction of the initial driving current.

The force acting on a unit convected positive charge will be the induced elec-

tric intensity (see again formula (29.4))

E; 4 = (v/¢)S = aRsn/c = - Ql'n/cl, (29.6)

where 2 is the angular velocity of rotation of the circular wire and n is the unit
vector at any single point of the wire pointing along its linear rotational wvelocity,
i.e., against the direction of the initial driving current. Thus the electric inten-
sity induced by the scalar magnetic intensity is directed along the driving current
and 1 call it INDUCED FORTH ELECTRIC INTENSITY.

The induced electric tension will be
dr = - (21/¢2) QRI". (29.7)

u, .= [E._ .
ind 2nR ind

and will also act in anti-clockwise direction, i.e., will have the same direction
as the driving electric tension, Udr’ and I call it INDUCED FORTH ELECTRIC TENSION.

We know that the tension induced in motors driven by a vector magnetic intensity,
B, is always opposite to the driving tension and for this reason it is called INDU-
CED BACK ELECTRIC TENSION. And one can immediately show why in B-motors a back elec-

tric tension is induced:
Let us have a current element Idr put in a vector magnetic field B which is per-

pendicular to dr. The force acting on this current element, according to the third

formula (21.1) is
= (ldr/c)xB. (29.8)

which is

dfwire
The velocity v acquired by the wire will have the direction dfire
drxB/drB, and the induced electric intensity acting on the convected charges will

be, again according to the third formula (21.1),
v(drxB/drB)xB = - (v/drB)Bx(dr<8) = - (v/drB)B%dr = - vB(dr/dr)., (29.9)

Eing ©

i.e., it will be directed against the driving electric intensity (and tension) which

acts in the direction dr/dr.
After having presented the "mechanism" according to which a forth electric ten-

sion is induced in S-motors and a back electric tension is induced in B-motors, let
us make a more detailed comparison between a B-motor and an S-motor.
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Let us assume that both motors have the same ohmic resistance R, and that they
are driven by equal driving tensions Uy,. Thus the rest current in both motors will
be the same I oo = Uy./Ro.

If we let the B-motor rotate, it will acquire such an angular velocity Q that its
friction power Pf,. = (Mg, where Hfr is the friction torque at the angular velocity
t, will become equal to the induced back power Pj,4 = IUj 4, where U; 4 is the ind-
ced back tension and | is the current in the motor at the angular velocity (.

Indeed, let us assume, for simplicity, that the motor is a Barlow disk (see Sect.
47) with radius R in which the cylindrical magnetic field with intensity B is gene-
rated by a cylindrical magnet. The driving torque is produced by the interaction of
B and the current I which flows along the disk's radius. If we consider only one
current element Idr at a distance r from the center, the driving torque produced by
its interaction with B will be dMy. = rdf = rldrB/c, where df = IdrB/c is the force
acting on the current element. The motor will stop to increase its angular velocity

when the sum of all these elementary torques will become equal to the friction torque
Mfp. At the “"equilibrium" angular velocity f, when the current in the circuit will
be I, we shall have

R R R
M = ngdnﬁ_ = Qbfr'ldrB/c = I £der/c = IU; s (29.10)

where v is the velocity of the disk's parts with radius r and Uind is the induced
back electric tension. For the current we shall have 1 = (Ug. - Uind)/Ry. At rest
of the disk the power Proct = IrestlUdr = 12estRo Will be released as heat. At rota-
tion of the disk the power P = I[(Ug, - Uipqg) = IZRO will be released as heat and
the power Ppocph = IUjng will be delivered as mechanical power overwhelming the fric-
tion. The power delivered by the driving electric source Py = IUy. will be the sum
of the last two powers.

If we let the S-motor rotate, it m’ll' acquire such an angular velocity  that its
friction power Pg. = Mg will become equal to the iduced forth power Pijn4 = IUjpg-

Indeed, let us assume, for simplicity, that our motor is of the kind of the mo-
tor shown in fig. 9, assuming that at the point a there is a huge store of positive
charges and at point c there is a huge store of negative charges, so that certain
time a constant current I' flows from point a to point c¢c. The driving torque produ-
ced by the action of the scalar magnetic intensity S on the current along the cir-
cular loop will be

M. = [ Rpxdf .., (29.11)
dr 21{R whit
where (see (29.4))
df ip = 1drS/C = - 11'dr/c R (29.12)

is the force acting on the current element Idr. Putting (29.12) into (29.11), we ob-
tain for the z-component of the driving torque
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[] 2 ’ z 131
My = = J 11'dr/c® = - 2nRI1*/CC, (29.13;
2nR
The motor will stop to increase its angular velocity when its driving torque
will become equal to its friction torque. At such an "equilibrium" angular velocity
0 we shall have (see (29.7)), noting that M¢. and Mg, at the “equilibrium" an-
gular velocity &, are equal but oppositely directed,

2y ot 1 |
Mg, = My = - (2n/cE)ARIT" = TU; . (29.14)

At such a stationary rotation the power P = I(Udr + Uind) = IZR0 will be released
as heat and the power Pp.., = IUjpq will be delivered as mechanical power overwhel-

ming the friction. The power delivered by the driving electric source Pqr = IUgr

will be the difference of these two powers.

The driving torque of the B-motor is the largest at rest of the motor and reaches
its minimum at the angular velocity Q. The driving torque of the S-motor is the less
at rest and reaches its maximum at the angular velocity Q.

If the friction power QMg will always remain less than the mechanical power
IUjng» the S-motor will steadily increase its angular velocity until the destruction
of the motor by the appearing centrifugal forces. Thus the S-motor violates the

energy conservation law.

A B-motor can be run as a GENERATOR (machine generating electric tension and

eventually electric current and power) if applying to it a mechanical torque. The

mechanical torque which appears in a B-GENERATOR,because of the interaction
of the induced current with the B-field, is always directed oppositely to the dri-
ving mechanical torque and brakes the rotation. In every conventional B-generator
the produced electrical power is equal to the mechanical power lost by the source
of mechanical energy. Let me note, however, that I have constructed B-generators
where quite the whole produced power is "free", i.e., produced from nothing; such
are nmy non-braking B-generator MAMIN COLIU (Sect. 53) and the self-accelerating
generator VENETIN COLIU (Sect. 54).

The considered above S-motor can also be runas a generator, applying to it a me-
chanical torque. The mechanical torque which appears in an S-GENERATOR, because of
the interaction of the induced current with the S-field, is always directed in the
direction of the driving mechanical torque and supports the rotation. The produced
electric power in the S-generator is equal to the mechanical power gained by the
source of mechanical energy.

If Whittaker's formula is the right one, a scalar magnetic field can be not pro-
duced by closed current loops, as the divergence of the magnetic potential produced
by a closed current loop is zero according to Whittaker's formula As, however, it is
very likely that Nicolaev's formula is the right one, S-motors and S-generators can
be "driveni' by closed currents. Such machines are considered in Sects. 58 -60.
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30. QUASI-STATIONARY ELECTROMAGNETIC SYSTEMS

I make the following classification of the material systems (see also Sect. 9):

1. A material sytsem is called STATIC if there is such a frame of reference with
respect to which its particles remain at rest. The image (see Sect. 2) of a static
system remins the same in time.

2. A material system is called QUASI-STATIC if its images remain the same in time
but there is no such a frame of reference with respect to which its particles remain
motionless. According to this definition, the particles of a quasi-static system can
move with respect to each other, but in the direction of their velocities they must
be placed closely enough and they must have the same character, so that they may be
distinguished by their serial numbers only. If we do not pay attention to their se-
rial numbers, such a system will, in different momentsof time, create the same image
in our mind. The moving points of a quasi-static system always form ring-shaped cur-
rent tubes.

3. A material system is called STATIONARY if some of its characteristics remain
constant in time. The quasi-static system represents the most simple stationary sys-
tem because the whole complex of characteristics, namely its image, remains constant
in time.

4. A material system is called QUASI-STATIONARY if some of its characteristics
change insignificantly in time or in certain specific time interval.

5. A mterial system is called DYNAMIC if its images change in time.

6. A material system is called PERIODIC if its images repeat themselves regularly
after some time interval. This time interval is called PERIOD.

7. A mterial system is called QUASI-PERIODIC if its images repeat themselves af-
ter some time interval but not completely; however, after sufficiently long period
of time (i.e., with the increase of the number of the "quasi-periods") the image of
the system approaches closely enough its initial image.

The field of static and quasi-static systems of electric charges is called a CON-
STANT ELECTROMAGNETIC FIELD.

Let us consider a system of electric charges which generates the potentials ¢ and
A (given by formulas (8.1)) in the different space points.

1. If
3@'/31: = 0& A = 0. (30.1)
the system is static.
2. If
ae/3t = 0, oA/3t = 0, (30.2)
the system is quasi static or stationary.
3. If
3¢/3t £ 0, 3A/3t £ 0, (30.3)

but we can assume
2e/ot? = 0,  d2A/atl =0, (30.4)
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the system is quasi-stationary.

The conditions (30.4) can be fulfilled strictly only if ¢ and A are linear func-
tions of time (for example a circular current which constantly increases its radius).
If the system is periodic, the conditions (30.4) cannot be fulfilled. But if the
periodic change is slow and for long enough time intervals we can accept that ¢ and
A are linear functions of time, we can accept the system to be quasi-stationary.

Usually if the shortest period of the system anin fs much larger than the time
t = Dmax/c. where Dmax is the largest size of the system, the system is quasi-sta-
tionary.

Another criterion for accepting an electromagnetic system to be quasi-stationary
is the following: The effects due to the accelerations (second time derivatives) of
the charges (i.e., the radiation of the charges) must be feeble and thus can be neg-

lected.
For a quasi-stationary system not equations (9.16) but equations (9.15) are va-

lid. Let us write them again
Ad = div(gradd) = - 4nQ, A = grad(divA) - rot(rotA) = - 4nJ. (30.5)

As I showed in Sect. 9, these equations are trivial mthematical results of the
definition equalities (8.1) for the electric and magnetic potentials and equalities
(9.14) for the charge and current densities.

Another trivial result of equations (8.1) is the equation of potential connection

(8.8) which I write here again
divA = - 3¢/cat. (30.6)

Let us write again the first notation (21.1) and the second notation (8.6)

E = - grade, B = rotA, (30.7)

coul
called Coulomb electric intensity and mgnetic intensity.
If we rewrite the second equation (21.1) and we take divergence from the second

expression (30.7), we obtain

E, = - 3A/cat, div(rotA) = 0, (30.8)

tr
or

mtEtr = - oB/cat, divB = 0. (30.9)

If we substitute (30.6) and the second expression (30.7) into the second equation
(30.5) and if we rewrite the first expression (30.5), we shall have

rotB = - 3(gradd)/cat + 4nJ, div(grade) = - 4nQ, (30.10)

or

rotB = 3E /cat + 4nJd, divE = 4n(. (30.11)

coul coul
Equations (30.8) and (30.10) are the Maxwell-Lorentz equations for a quasi-statio-

nary system of electric charges in their most logical form.
Equations (30.9) and (30.11) are the Maxwell-Lorentz equations for a quasi-statio-
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nary system in their usual form. It is extremely inportant to note that Etr in the
first equation (30.9) is completely different from Ecoul in the first equation
(30.11). These two electric intensities have noting in commwn. However B in the
first equation (30.9) and B in the first equation (30.11) is one and the same quan-

tity.

Official physics defends the opinion that a magnetic field can generate elecric
field and electric field can generate magnetic field. This is a complete nonsense
(this view-point is defended also by Jefimenko in his new book "Causality, electro-
magnetic induction and gravitation"(Electret Scientific Company, Star City, WV 26505,
USA, 1992)). The electric and magnetic intensities are determined (and defined!)
by the potentials and only by the potentials.

Now I shall examine the highly controversial problem about the "DISPLACEMENT CUR-
RENT" (see Sect. 13). I shall show that there is nothing puzzling here if this no-
tion will be rightly understood. -

Maxwell supposed that if a conduction current becomes interrupted at the plates
of a condenser, between those plates a current with density (13.12) "flows", cal-
led "displacement current". Maxwell supposed that displacement current has the same
magnetic character as conduction current with the same density, i.e., that it acts
with potential magnetic forces on other currents and reacts with kinetic forces
against the potential magnetic action of other currents. And Maxwell supposed (or
such was rather the interpretation of his epigones) that all this is done by the
hypothetical current “flowing between the plates of the condenser". This is absolute-

ly not true.
It is obvious that such a displacement current cannot react with kinetic forces

against the action of other currents, as it flows in vacuum, and neither the Lord
is able to set vacuum in motion. On other side vacuum cannot act with potential for

ces on other currents as vacuum is vacuum [(“a rose is a rose, iS a rose is a rose").
To understand the essence of the displacement current, let us consider not the

differential equation (30.11) but the integral equation (13.11), rewriting it for a

quasi-stationary system
{B.dr = (B/C"‘t)éscoul"’s + (4n/c)£J.dS. (30.12)

The magnetic intensity is -generated by the currents in whole space. Meanwhile in
(30.12) the linear integral of B along the closed 1oop L is related only to the con-
duction currents crossing the surface S. If fromboth sides of S there are condenser's
plates which interrupt conduction currents, these interrupted currents generate such
an electric intensity field Ecou] between the condenser's plates that

?-B.dr = (3/c3t)[E_, ,1-95- (30.13)
S

Thus it is not the changing electric field ascou]/at which generates B. The integral
on the right side of (30.13) gives simply information about the quantity of conduc-



tion current interrupted on the surface S. Consequently the magnetic intensity ca:-
culated by formula (30.13) is generated by charges flowing to the condenser's plates

and these charges react with kinetic forces to the action of other currents flowing

between the condenser's plates or outside.

If aEcou]/at = 0, formula (30.12) shows that §B.dr is determined only by the
quantity of current crossing the surface. This is true. But when one begins to cal-
culate to find B, one sees that one has to take into account the currents in whole
space. The displacement current term in (30.12) indicates that when making integral
calculations to find B one has to take into account also the interrupted by the sur-

face S currents.

That's all about the displacement current!

Let us now assume that the considered electromagnetic system consists not only
of charges (free or in conductors) but also of dielectrics and magnetics. In such a

case the Maxwell-Lorentz equations (30.9) and (30.11) are to be written in the form
rotE, . = - 3B/cdt, divB = 0, (30.14)
rotH = aD/cat + 4nd, divD = 4nQ. (30.15)

Now, if there is a condenser between whose plates a dielectric with permittivity
€ is put, between these plates a POLARIZATION CURRENT will flow with density

Jo1 = AD-E)/cat = (e -1)aE/cat. (30.16)

This current does not transfer charges from one plate of the condenser to the
other, as the case will be if the plates will be connected by a wire. Because of the
orientation (or polarization) of the mlecular electric dipoles along the field of
the acting electric 1'ntensity E, generated by the charges on the plates, it seems
that charges have been transferred, but, as a mtter of fact, charges have not been
trans ferred.

The same phenomenon appears also when there is vacuum between the plates: as the
charges coming to one of the plates repel by electrostatic induction charges of the
same sign from the other plate, it also seems that charges have been transferred.
Thus there are many common features between polarization current and displacement
current, and some people call also the polarization current “"displacement current”.
I, however, rigirously separate them. In any case, both the displacement and polari-
zation currents do not act with potential magnetic forces on other currents and do
not react with kinetic forces aginst the potential action of other currents. | con-
firmed these assertions experimentally (see Sects. 61 and 62).

31. ELECTRIC DIPOLE MOMENT

Let us consider the constant electric field of a stationary system of charges at
large distances from the system, that is, at distances large compared with the dimen-

sions of the system.
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We introduce a frame of reference with its origin somewhere in the system of char
ges. let us denote the radius vector of the reference point by r and the radius vec-
tor of the various charges by r;- According to the first formula (8.1), the electric
poten;ial generated by the system at the reference point will be

$ = 1l:’lq‘./l:ti iElqi/lr - ril, (31.1)
where
R, =r-r, (31.2)
is the vector from the charge q; to the reference point.
Let us investigate expression (31.1) for large r, i.e., for r > r,. To do this,
let us expand (31.1) as power series in rso retaining only the terms linear in rys

n n n
o(|r - ril) = ¢(r) - .Il{a¢(r)/ar}.ri = .{lqi/ri - grad(l/r)..flqiri. (31.3)
i= i= ‘ i=

If we denote the total charge by

n
q=1a;, (31.4)
i=1
formula (31.3) can be written
d = q/r + d.r/ra. (31.5)
where the sum n
d - 1.Elqir'i (31.6)

is called ELECTRIC DIPOLE MOMENT of the system of charges.
It is important to note that if the sum of all charges is equal to zero
q = ‘Z q‘ = 0. (31.7)
i=1
then the dipole moment does not depend on the choice of the frame's origin. Indeed,
the radius vectors r and r% of one and the same charge in two different frames of

reference, K and K', are related by the formula

r; =R+ rs, (31.8)
where R is a constant vector, representing the radius vector of the origin of K' in
K. Substituting (31.8) into (31.6) and taking into account (31.7), we obtain d = d'.

Under the condition (31.7), the electric potential in formula (31.5) becomes

¢ = dor/ro, (31.9)

The electric intensity, according to the first formula (21.1), will be
E = - grad(d.r/r) = - (1/r)grad(d.r) - (d.r)grad(1/r>). (31.10)

Keeping in mind that d is a constant vector, we shall have (see p. 6)

grad(d.r) = d, (31.11)
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so that
- (3(d.r)r - ridy/eo. (31.12

If we shall expand ¢ in (31.3) to higher orders in ri. we shall obtain other myl-
tipole moments. The moment which corresponds to the second order terms in the expan-

sion of ¢ is called ELECTRIC QUADRUPOLE MOMENT. Two nearly located opposite charges
are called ELECTRIC DIPOLE.

32. MAGNETIC DIPOLE MOMENT

Let us consider the constant magnetic field of a stationary system at large dis-
tances from the system.

As in the previous section, we introduce a frame of reference with its origin
somewhere in the system of charges. Again we denote the radius vector of the refe-
rence point by r and the radius vectors of the various charges by rse According to

the second formula (8.1), the magnetic potential generated by the system at the re-
ference point will be

A=

q;v;/cR, Z q;vi/clr - ryl. (32.1)
i

1! 1-1

Making the assumption r > rs and expanding (32.1) as a power series to within terms
of first order in ri. we obtain

] M:

n n
Allr - ry]) = (l/cr)iflqivi - (1/c)1);1qivi{grad(llr).ri}. (R.2)

As all currents in the system are closed, the first term on the right will be
equal to zero and we shall have

] 3§
= (1/Cl" )iZIQ.'V](ri-r)- (32.3)
Taking into account that Vi = dr;/dt and that r is a constant vector, we can write
)_’qv(r .r) = lig ri(r r)}+-1-')}q{v(r r) - r.(v..r)} (32.4)
i 2 dt iS5y i’ 2i=1iii' vt '

If we average this equation in time, the first term on the right side will give
zero as a total time derivative of a limited quantity. Thus introducing the quantity

n n
= (12¢) ] aglrixw) = (1/26) [ rysds (32.5)
1= 1=

which is called MAGNETIC (DIPOLE) MOMENT of the system of charges, we can present the
magnetic potential (32.3) in the form

A = mr/r3. (32.6)

The magnetic intensity, according to the second formula (8.6), will be (see p. &'

B = rot(mr/r>) = mdiv(r/r>) - (m.grad)(r/rd). (32.7)
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First we have (see again p. 6)

. 1 . )| 3 r.r

divL = = divr + r.grad—= = = - 3 - _ o, 32.8

33 33775 (32.8)
and then
1 | m 3r(m.r)

(m.grad)-r- = —(m.grad)r + r(m.grad—) = - . (32.9

33 SR R ’
Thus for the magnetic intensity (32.7) we obtain

B = {3(m.r)r - rem}/ro. (32.10)

We see that the magnetic intensity is expressed in terms of the magnetic moment
by the same formula by which the electric intensity is expressed in terms of the

electric dipole mment (cf. formula (21.12)).
The magnetic moment of the electron is called MAGNETON OF BOHR and has the value

m, = qeh/4umec. (32.11)

where q, and m, are the charge and the mass of the electron, h is the Planck con-
stant (see Sect. 2) and ¢ is the velocity of light.
The formula for the magneton of Bohr can easily be obtained from formula (32.5)

which | shall write in the form
me= (l/2c)rxqev, (32.12)

considering the charge of the electron (and its mass, too) as a ring with radius r
rotating with a velocity v. Multiplying and dividing the right side of (32.12) by

me and taking into account that the angular momentum (the spin) of the electron is

pxmov| = h/2m, (32.13)

we obtain readily formula (32.11).
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IW. HIGH-ACCELERATION ELECTROMAGNETISM

33. INTRODUCTION

In Chapter III the accelerations of the charges were assumed to be small and have
been neglected. In this chapter I shall not assume the accelerations of the char-
ges as negligibly small. Thus in this chapter the most general dynamic system of
electric charges will be considered.

As it will be shown, charges moving with acceleration radiate energy. The radia-
ted enerqy is emitted in the form of energetic quanta which are called PHOTONS (with
more precision - see beneath - ELECTROMAGNETIC PHOTONS).

The photons always propagate with the velocity ¢ (in absolute space!). The uni-
versal masses of the photons are equal to zero, so that their universal space and
time momenta are always equal to zero and only their proper space and time momenta
are different from zero.

The proper space and time momenta of the photons are very small quantities and
one can observe with macroscopic instruments only the collective action of many pho-
tons. When observing the flux of many photons, as the latter my interfere (see
axiom IIl), the observer remains with the impression that high-accelerated electro-
magnetic systems radiate waves, which are called ELECTROMAGNETIC WAVES. However with
microscopic instruments, i.e., with particles, one can observe the action of single
photons. Thus the assertion “photons are at the same time particles and waves" is
wrong. The photons are particles, but these particles can interfere if at the moment
of observation the distance between them is less than their proper wavelength (see
axiom III).

When masses move with acceleration radiation of GRAVIMAGRETIC PHOTONS is to be
expected. I shall show, however, that the radiated gravitational and magretic inten-
sities are so feeble that the detection of gravimagretic photons (waves) is highly
improbable.

In high-acceleration electromagnetism I shall ignore the scalar magnetic intensi-
ty. Until the present time experiments demonstrating the existence of high-accelera-
tion effects due to the scalar magnetic intensity (SCALAR ELECTROMAGNETIC WAVES) have
not been reported. Nicolaev tries to persuade me that he has observed (see “Deutsche
Physik", 2(8), 24, 1993)) the existence of scalar electromagnetic waves but, as I
show in my comments to his article, his experiments are not convincing ne.

34. THE ELECTRIC AND MAGNETIC INTENSITY FIELDS OF AN ACCELERATED CHARGE

To obtain the electric and magnetic intensities generated by a particle moving
with acceleration, we have to put in the definition equalities for the electric and

magnetic intensities
E = - gradd - dA /cat, B = rotA (4.1)
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the electric and magnetic potentials of the particle
¢ =q/r, A = qv/cr. (34.2)

However, as information cannot be transferred momentarily, the observation elec-
tric and magnetic potentials are to be expressed through the advanced and retarded
elements of motion (see Sect. 11).

In fig. 1 the reference point P, for which we wish to know the electric and mg-
netic intensities at the moment of observation t, is taken at the frame's origin.
The charge q generating the potentials and consequently the intensities is shown mo-
ving with a constant velocity v, but we shall assume now that this velocity is not
constant, i.e., that the charge moves with acceleration.

let us assume that at the observation moment t the charge is at point Q, called
observation position. Information about the charge's velocity and acceleration can
be obtained at P at the observation moment t = t' + r'/c = t" - r"/c, if at the ad-
vanced moment t' a signal moving with the velocity c will be sent with this infor-
mation from the advanced position Q' towards P, or if at the retarded moment t" a
signal moving with the velocity c will be sent with this information back in time
from the retarded position Q" towards P (so that this signal will reach P at the mo-
ment t which is before the moment t"). My second axiom asserts that time has no the
quality "reversibility", but "mathematics" does not know this!

The distances r', r and r" are, respectively, the advanced, observation and re-
tarded distances, and the angles 6', 6, 6" between the charge's velocity v and the
line joining the charge with the reference point (whose unit vectors are n', n, n")
are, respectively, the advanced, observation and retarded angles.

I repeat (see Sect. 10.2) that official physics, proceeding from the wrong con-
cept that the electromagnetic interactions “"propagate" with the velocity c, calls
all topsyturvy, i.e., official physics calls the advanced elements "retarded" and
the retarded elements (to which it does not pay much attention) "advanced". I shall
use only my terminology.

First 1 shall make the calculation when the observation elements are presented
by the advanced elements and then by the retarded ones. As the character of light
propagation is not Newton-aether but Marinov-aether, the potentials must be taken in
their Lienard-Wiechert forms (see formulas (11.3)).

34.1. CALCULATION WITH THE ADVANCED ELEMENTS OF MOTION.
The observation Lienard-Wiechert potentials expressed through the advanced ele-

ments are

6 = q : A= 3 . (34.3)
r'(l1-n'.v/c) cr'(l - n'.v/c)

The velocity in the denominators is a certain middle velocity between the advanced
velocity v' and the observation velocity v, so that moving with this velocity in the time
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t -t' =r'/c, the charge covers the distance Q'Q. As this velocity appears only in
corrective terms in the final result, we can take for it the advanced as well as the
observation velocity. The velocity in the nominator of A is the observation velocity

v=v+ur'/c, (34.4)

where u is some middle acceleration between the advanced acceleration u' and the ob-
servation acceleration u. To be able to carry out the calculations, we must have the
same symbol for v in the nominator and denominator of A. Then, after having done the
differentiations, we shall substitute v in all corrective terms by v' and in the
non-corrective (or substantial) terms according to the relation (34.4). Then we shall
do the same with the acceleration which will appear after taking time derivative
from the velocity. As we shall see, the velocity will appear in the final result on-
ly in corrective terms and the acceleration only in substantial terms. Thus the sub-
stitution which we have to do in the final result will be

v=yv', u=u' +w'r'/c, (34.5)

where w' is the advanced super-acceleration of the charge.

Official physics asserts that the potentials which one has to use at the calcu-
lation of the electromagnetic field of an accelerated charge must be given by for-
mulas (34.3) where v is to be substituted by v'. Such potentials, however, are nei-
ther advanced nor observation, as the pure advanced potentials will be

$' =q/r', R' =qv'/cr', (34.6)

while the observation potentials
¢ = q/r, A = qv/cr, (34.7)

if expressed through the advanced elements of motion, are to be written in the form
(34.3) where v in the nominator of A is to be presented according to (34.4) through
the advanced velocity and acceleration (as already said, v in the denominators of

¢ and A is neither the advanced nor the observation velocity of the charge but some
mi ddle velocity). Thus official physics works(23) with some "hybrid" potentials which
are neither pure advanced nor observation and for this reason it cannot obtain the
radiation reaction intensity straightforwardly, as I do it in my theory considering
v in the nominator of A as the observation velocity, so that ¢ and A in (34.3) are
the exact observation potentials (when assuming that light has a Marinov-aether cha-
racter of propagation).

But why must we express the observation elements of motion in (34.3) - the charge-
observer distance and the charge's velocity - through the advanced ones? The reason
is not the hypothetical “propagation of interaction”. I noticed already that as the
quickest "information link" can be established by the help of light signals, one
cannot calculate the intensities of a moving charge taking its position, velocity
and acceleration at this very moment because there is no way to know them. At the
reference point one can have information only about the advanced (or retarded)ele-
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ments of motion.

There is, however, also another reason. As the radiated energy propagates with
the velocity of light, then to calculate the radiated intensities at the reference
point at the observation moment, one must operate with the advanced charge and cur-
rent densities. Thus we are impelled to express the observation elements of motion
in (34.3) by the advanced ones in order to obtain right values for the radiated in-
tensities. The mechanics of the right calculation when radiation and potential in-
tensities are to be separated becomes very transparent and clear in Sect. 37.

Let us now do the calculations.

In formulas (34.1) we must differentiate ¢ and A with respect to the coordinates
x,y,2 0f the reference point and the time of observation t. But in the relations
(34.3) the potentials are given as function of t' and only through the relation

r' =c(t-t') (34.8)

as composite functions of t. Now I shall write several relations which will be then
used for the calculation of the composite derivatives.
Having in mind the first relation (34.5), we write
vv' =-93r'/ot’, (34.9)

where r' is the vector of the advanced distance pointing from the charge to the re-
ference point.

Di fferentiating the equality r'z = r'2 with respect to t', we obtain
RCLI ] i (34.10)
ot ot
and using here (34.9), we find
ar' .
— = =n'.v. 14.11
7t n.v (34.11)

Dif ferentiating (34.8) with respect to t and considering r' as a direct function

of t', we find

?-'”-'-%L'--c(l-——; (34.12)

putting here (34.11), we obtain
ot' 1

. . 34.13)
ot 1 -n'.v/c (

Similarly, differentiating relation (34.8) with respect to r and taking into ac-
count that t is the independent variable, we obtain

at’, (34.14)

or' ar'  or'at' _ _ .
ar' ar at' or or
putting here (34.11), we obtain
ot' n'

ar ¢(l-n.vc) (34.15)
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Finally we find the following relation (which will be used only for the calcula-
tion of B)

3 r'.v ) r'.v ) r'.v,ot'
“L(r' - =) = (rl - + ;rl - VT VoL
3!"( c) or’ c) at" ¢ or (38.16)

. vy . vV, ru n' . | .
Moty )c(l-n'.v/c) ctleTer T ‘¢(1-n".v/c)

Thus the electric intensity is to be calculated according to the formula (see
(34.1))

F--23_123A_ _30 3¢ at'

or  Coat ar'  at' ar

1
- s == (3.17)

If we substitute here the expressions (34.3) and take into account the relations

(34.13) and (34.15), after some manipulations, the following final result can be ob-
tained

E = q 1 - v2/c2 _r v) + gr'x{(r' - r'v/c)xu}

— , 34.18)
(r' = r'.v/c cz(r' - l".\f/c)3 (

)3 (r‘ C
where, according to (34.5), v is to be replaced by v', as it appears only in correc-
tive terms, and u is to be replaced by u' + w'r'/c, as it apppears in non-corrective
terms.

One can easily check the equality of formulas (34.17) and (34.18) by reducing the
first and the second to common denominators and by resolving all products to sums of
single terms; then, after canceling mutually some terms in the nominator of formula
(34.17), one sees that the remaining terms are equal to the terms in the nominator
of formula (34.18).

Remembering the formula for rotation from a product of a vector and a scalar
(see p. 6), we have to calculate the magnetic intensity according to the formula

B = rot qv = q rotv - % vxgrad— 1 . (34.19)
c(r' - r'.v/c) c(r' - r'.v/c) r'-r'.v/c

Since we consider the velocity v as a function of r through the advanced time t',
we shall have according to the rules for the differentiation of a composite function

ov _ at'
t') = - . .
rotv(t') 5t x o (34 20)
Substituting (34.15) into (34.20) and (34.20) into (34.19), we obtain
q ' q ' '
B = uxr' + vxgrad(r' - r'.v/c). (34.21)
cZ(r' - r'.v/c) c(r' - r'.v/c)?
Putting here (34.16), we get |
[} 2 ]
B = g rix(erru+s ¥y - ov s Ly -2V, U2
cz(r. - r'.v/c)3 ( C C c ) ( 2)
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Forming the product n'xE (take E from (34.18)), we obtain an expression equal to
the right side of (34.22) and, thus, we conclude
B = n'xE. (34.23)

Now substituting v and u from (34.5), we can present E in a form where only ad-
vanced quantities are present

l'V'Z/CZ)(ﬂ' - V./C) + q n'*{(n' - V'/C)"U.} + q nlx(nlwl). (34.24)
r'2(1 - n'.v)‘c)3 c? r'(1 - I'I'.V'/C)3 c3

E=q(

In the last term depending on the super-acceleration we have not taken into account
the factors which will give terms, where ¢ will be in a power higher than 3 in the

denominator, as such terms are neqligibly small.
Substituting (34.24) into (34.23), we obtain the following expression for the

magnetic intensity where only advanced quantities are present

(1 - v'z/cz)n'xv' 4+ g n'x[n'x{(n' - v'/c)xu'}] -9 ke, (34.25)
cm(l - nl.vl_/c)g CZ r..l(l - I"I'.V'/C)3 C3

=--9
B'c

34.2. CALCULATION WITH THE RETARDED ELEMENTS OF MOTION.

Entirely in the same way as in Sect. 34.1 we can calculate the electric and mag-
netic intensities produced by a charge moving with acceleration, if expressing the
observation elements of motion through the retarded ones. These calculations are
done in Ref. 5. Here I shall give only the final formulas which are analogous to for-

mulas (34.24) and (34.25)

(1 - vua/cz’(nu + V"/Cj . q nux{(nn + V"/C)xu"} _ q

n"x(n"xw"), (34.26)
rnZ(l + n“.V“/C)3 C2 r"(l + nn.V“/C)B C

E=q 3
_ S (l - V"ZICZ)I'I“’CV“ _q I'I"XEI'I""{(II" + V“/C)"U"}] i q

n'>w", (34.27)
¢ r"2(1 + n".\r"/c)3 ¢ r'(1l + I'I".V"/C)3 C

B = 3

and the formulas for the observation potentiak expressed through the retarded ele-
ments of motion, from which we proceed and which are analogical to formulas (34.3)

¢ = q A = qv (34.28)

b

r" + r'.v/c c(r" + r".v/c).

34.3. INTERPRETATION OF THE OBTAINED RESULTS.
1 shall use the formulas written with the advanced elements of motion.

The three terms in formulas (34.24) and (34.25) are called, respectively, POTEN-
TIAL, RADIATION and RADIATION REACTION ELECTRIC and MAGNETIC INTENSITIES.

Replacing again the advanced velocity by the observation velocity (see (34.5)),
the potential electric intensity can be written

2,2
1 -v/c
E ¢ =9 {r' - vr'/c), 34.29)
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Using fig. 1, we can write

r'-r'.v/c=r'-r'veosé'/c s (rl - (r'vsing*/c)2) 112,

(34,30
According to the law of sines we have
r'/sin(r - 8) = r/sing’, (34.31)
so that we can write (34.30) in the form
r'-r'.v/c = r(1 - vzsinze/c)llz. (34.3)
Substituting this into (34.29) and putting there r = r' - vr'/c, we obtain
2,2
"ot 7977 : vz;ige,cz)yz 5 %2‘ (34.33)
In the same way we obtain for the potential magnetic intensity
B  =93__1- vzlc2 v - g vn (34.34)
pot ¢ (1- v251n26/c2)3/2 r3 € 2

I consider the difference between the "exact" and "non-exact" values of the po-
tential electric and magnetic intensities as due only to the aether-Marinov charac-
ter of 1ight propagation. Thus I hardly believe that this can be an effect which
can be physically observed. Conventional physics accepts that the "field" of a ra-
pidly moving charge concentrates to a plane perpendicular to its mtion, as for
6 + n/2 there is (1 - v2/c2)(1 - v2sin28/c2)3/2 & = when v » c. I think that the
effect is only computational and that it cannot be observed. Of course, the last
word has the experiment.

Thus the potential electric and magnetic intensities of an arbitrarily moving
electric charge are determined by the distance from the charge to the reference
point (being inversely proportional to the square of this distance) and (for B) by
the velocity of the charge, both taken at the moment of observation. These intensi-
ties are exactly equal to the electromgnetic intensities which the charge will ori-
ginate at the reference point if the velocity is constant.

The second terms on the right sides of (34.24) and (34.25)

(L mln - v/epu)

E
rad .2 r'(l-n'.v/c)3

rad = " *Erag (34.35)
determine the electric and mgnetic intensities which the energy radiated by the
charge originates at the reference point and we call them radiation electric and
magnetic intensities. As the radiated energy propagates in space with the velocity
of light c, we do not have to express here the advanced elements by the observation
elemenets. Here the "directional" effects are no more computational and they can
easily be observed(s). The radiation electric and magnetic intensities are determi-
ned by the distance from the charge to the reference point (being inversely propor-
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tional to this distance) and by the acceleration of the charge taken at the advanced
moment. Thus a charge moving with a constant velocity does not originate radiation
intensities.

The third terms on the right sides of (34.24) and (34.25)
n'<x(n'xw'), B -3 n'xw' = n'<E (34.36)

rea C3 read

Erea =

OI.Q
w

determine the electric and magnetic intensities acting on the radiating charge it-
self as a reaction to the photon radiation diminishing its velocity and consequently
its kinetic energy with a quantity exactly equal to the quantity of energy radiated
in the form of photons.

The radiation intensities are those which appear at the reference point when the
radiated photons cross this point; if there are electric charges at the reference
point, they will come into motion "absorbing" the radiated energy. The radiation
reaction intensities act on the radiating charge itself. For this reason I call the
intensities (34.36) electric and magnetic intensities of radiation reaction.

The electric and magnetic intensities of radiation reaction do not depend on the
distance between charge and reference point and are determined by the charge's super-
acceleration at the advanced moment, which, of course, can be taken equal to the su-
per-acceleration at the observation moment.

Thus we see that only the potential and radiation intensities have a character of
field quantities, because when position, velocity and acceleration of the charge are
given, these intensities are determined in all points of space, the former "momenta-
rily"”, the latter with a time delay r'/c. The radiation reaction intensities are de-
termined only for the space point where the radiating charge is located and act only
on this charge.

One may wonder that such precised, detailed and complicated information can be
obtained with some simple mathematics from the extremely simple initial equations
(34.3) and (34.1), so that here we have to admire the Divinity for His superb per-
fectness and amazing abilities.

Entirely in the same way, we can establish that the first terms in formulas (34.2%)
and (34.27) give, respectively, the potential electric and magnetic intensities
(34.33) and (34.34). Thus we conclude that the calculation of the potential electric
and magnetic intensities with the help of the advanced elements of motion as well as
with the retarded elements of motion leads exactly to the same results.

Let us now compare the second and third terms in formulas (34.24), (34.25) and in
formulas (34.26), (34.27). If we assume that the advanced elements of motion do not
di ffer too much from the retarded ones, i.e., if we assume

[} ]

r'=pe" =r, v' =¥ = v, u' =u" = u, w' =w" =w, (34.37)

then the electric intensity given by formulas (34.24) and (34.26) and the magnetic
intensity given by formulas (34.25) and (34.27) can be written as follows



_ _.n nx(nxu) 4 _ nx(nw
E I':pot*"iracl'”:r\ea'q‘_2*”:' 2 r 9 3

- . qMWV_- MU _ M
B"Bpot+arat:l"'ﬂres" qcr2+qcr qc. (34.38)

where the upper signs are obtained when the calculation is carried out by the help
of the advanced elements of motion, and the lower signs are obtained when the calcu-
lation is carried out by the help of the retarded elements of motion.

As said above, the potential intensities are the same when calculated with the
advanced and with the retarded elements of motion.

The electric intensity of radiation Erad is the same when calculated with the ad-
vanced and with the retarded elements of motion. However the magnetic intensity of
radiation Br-ad is obtained with opposite sign if the retarded elements are used.
Since we relate the intensities of radiation with the density of the enerqy flux

(see Sect. 14)

I = (¢/4n)E (34.39)

raderad’

we see that the electric and magnetic radiation intensities calculated with the ad-
vanced elements of motion give an energy flux density directed from the charge to
the reference point

2 2
(4n/c)I' = El"ade;-ad = - cgrz{nx(nxu)x(nxu) = - c—?‘?{(n.u)n - (n.n)ulx(nxu) =

2 2 2
- j-—{(n.u)mt(mtu) - ux(nxu)} = - -L{(n.u)zn - uzn} = j—--{u2 - (n.u)z}u. (34.40)
4 Al c4r2
while the electric and magnetic intensities of radiation calculated with the retar-
ded elements of motion give an energy flux density directed from the reference point

to the charge 2 )
q 2
(4“/C)I" - " X " - - —“——'{u - (“.U) }no (34.41)
rad " rad c4r2

As w - (n.u)z 2 0, the flux (34.40) corresponds to the real electromagnetic wave
radiated in the direction n, while the flux (34.41) corresponds to a wave propaga-
ting in the direction -n. This second wave is fictitious, as it must exist if time
has the property "reversibility". Thus only the calculation with the advanced ele-
ments of motion corresponds to the real course of time (from the past to the future);
the calculation with the retarded elements of motion corresponds to the negative
course of time (from the future to the past).

The intensities of radiation reaction do not depend on the distance between the
charge and the reference point, and, thus, they have mathematical sense also for the
point where the charge itself is placed. So we are tmpelled to make the conclusion
that the electric and magnetic intensities of radiation reaction act on the radia-
ting charge itself. Here we cannot speak about advanced and retarded moments, as

both these moments coincide with the observation moment.
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However, as formulas (34.38) show, the intensities Erea and Brea depend on the
angle between the super-acceleration and the line connecting the charge with the re-
ference point. Since the reference point for the radiation reaction is the radiating
charge itself, we have to eliminate such an angular dependence by averaging over all
directions.

The averaging is to be performed in the following way: We plot the vectors of
the intensities Erea ocbtained when the reference point covers densily a whole sphere
around the charge, so that the angle between n and w takes all possible values. Now
if we add geometrically all these vectors Ereai’ i=1,2,.....N, whene N » «, and if
we divide the resultant vector by the number N, we shall find the average value (we

write the intensity of radiation reaction calculated with the advanced elements of

motion)

=

21
Erea'ﬁ]

Ill“-'lz

Erea, © -ﬂl- i):lqn,ix(niw)/CB. (34.42)
1 =

Multiplying both sides of this equation by 4m, we get
4nE ?s ar [E__ _d (34.43)
n = —— - ’ .
rea .z, rea; N 4y "ed
by mking the transition N + =, and thus
. 2n
E = ._.!'.

m
[ ] sine dodp = —"—I “Fi(nan - wisine docs, (34.44)
rea 4ng5 o0

c3 anc3 0 o
where ny = sindcosé, ny = sindsing, n; = cos6, 6 and ¢ being the zenith and azimuth
angles of a spherical frame of reference with origin at the charge.

Thus formula (34.44) can be written

- nen
Eea ° 4nc {, I{(w siné cos¢ + v, sinésing + w,c0s8)(sind cosd X + sinBsindy +
cos8Z - w}sind dode =
q . Ten 3 2 n2n 3
w X sin“8 cos ¢do d¢ +
3 ££ ¢ do d¢ wyyffsm Bsin¢ded¢+
. m2n n2n
wz [ [cos®esinadeds - w [ [sinedo d¢) =
00 00
q 3 A T
_3[“' X Ism 0do + w y fs1n38de + w2 f2cosze sin6dd - w [2sin6de} =
ic 0 0 Z 0 0
L RV S ST B - -4
4c3 (wax + 3 yy + BHZZ w) = ';;3 (-iﬂ - 4w) = - -3:"3-H. (34,45)

The magnetic intensities of radiation reaction are the same when calculated with
the help of the advanced and retarded elements of motion. But the averaging of the
magnetic intensity of radiation reaction over all angles gives zero. Indeed,
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] q n2n
R = — = - nw sinddedo =
Brea * 7 4In Brea® anc3 {) !) ¢
g " 2n R -
- ——5 | [ {(w, sin8sing - w cos8)X + (w,cos® - w, sin@ cosé)y +
4mc” o0 o
(w,, 5in6 Cosd - w, sind sing)Z}sin6 do dé = O. (34.46)

Thus formulas (3.38) are to be written in the form

2q
E =¢E + E + E =q£_+qn)‘(l'l!‘!)_ (v
pot rad rea rl Cr 3¢
nxy nxu
pot ~ “rad or2 2, ( )

where we have taken these signs which correspond to the calculation with the advan-
ced elements of motion.

35. ELECTROMAGNETIC POTENTIALS OF PERIODIC SYSTEMS

Let us suppose that the charge and current densities of the considered systemof
electric charges are simple periodic (i.e., monoperiodic, or trigonometric) functions
of time

2
Q= Qp,cos(t+a), =2 xcos(z-r’lt + a), (35.1)

ma

where Qmax and Jmax are the amplitudes of the charge and current densities and re-
present their values for times t = nT - (a/2n)T, where n is an integer,

The quantity T is the PERIOD of the charge and current fluctuations; this is the
time after whose expiration the charge and current densities obtain again the same
values. The argument 2nt/T + a of the trigonometric function is the PHASE and the
quantity a is the initial phase which usually, when considering the charge and cur-
rent densities at a given space point only, can be taken equal to zero. The quantity
w = 2n/T is called (CIRCULAR) FREQUANCY and the quantity k = w/c = 2w/cT is called
(CIRCULAR) WAVE NUMBER. Such an electromagnetic SYSTEM is called MONOPERIODIC.

It is mathematically more convenient to write the real trigonometric relations as
complex exponential relations. Thus we can present the expressions (35.1) in the
form

Q = Re(Q, &' (Wt ")) = Re(q 7 (4t o)y,

3= retd el Wte)) o peqy iUt ey (35.2)

where Re{ } means that we must take only the real part of the complex expression in
the braces. The real parts of both expressions (35.2) are equal but usually the se-
cond forms are used, i.e., those with the negative exponents.
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[f we introduce the notations
Q =0Q_.e'%, J =3 e'e (35.3)
we can write (35.2), by omitting the sign Re{ }, in the form

0 = Qe vt J =3t (35.4)

where the new amplitudes Q,, J, must be considered as complex numbers which become
readl only under the condition a = 0. The complex forms (35.2) are called SHORT EX-
PONENTIAL FORMS and the complex forms (35.4) are called LAPIDARY EXPONENTIAL FORMS.
The LONG EXPONENTIAL FORMS are the following

) ciwt . e iwt i “jot | it
0= (12)iqe ™ + Qfe™). 9= (172)13 7T 4 3Te'VY, (35.5)

where Q;. J; are the quantities complex conjugated to Q,, J,.

The use of the complex exponential forms turms out to be very convenient when we
perform linear operations (say, adding, differentiation, integration) over the tri-
gonometric functions. By using the complex exponential forms, all linear operations
are to be applied not to trigonometric but to much simpler exponential expressions.
However, when we have to perform non-linear operations (say, multiplication), we have
always to use the long exponential forms.

Let us find the electric and magnetic potentials originated by a monoperiodic sy-
stem at an arbitrary reference point.

Following the concept that the potential electric and magnetic intensities appear
"momentarily" in whole space, while the radiated intensities propagate with the velo-
city ¢, we shall bear in mind the following rules when calculating the intensities
proceeding from the potentials:

1) When we calculate the potential intensities, we have to use the observation
potentials (refer to formula (34.7)).

2) When we calculate the radiation intensities, we have to use the advanced po-
tentials (refer to formula (34.6).

3) When we calculate both the potential and radiation intensities, we have to use
the advanced potentials (see formulas (10.3))

o - 5 Q(tR‘ R/C) gv, A - { "“R"R’C) av, (35.6)
where R is the distance to the elementary volume dV, but in the final result we have
to put ¢ = = in all non-radiation intensities if this ¢ appears as a result of mani-
pulation with advanced time. The execution of this program will become clear in Sect.
Sect. 37.

Thus if the charge and current densities at every elementary volume of the consi-
dered system are sinple periodic functions of time, with equal periods of fluctua-
tions, the electric and magnetic potentials will be also sinmple periodic functions

of time with the same period and by putting (35.4) into (35.6) we obtain
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-. - - -' J -. -
whe re
¢ % ikR _ ¢ _ikR
@w = {E-e dv, “w = 6?{—-& dv (3%.8)

are the complex amplitudes of the advanced electric and magnetic potentials.

Let us now suppose that the charge and current densities are periodic,but not
trigonometric, functions of time. As it is known, any periodic function can be pre-
sented as a Fourier series, i.e., as a superposition of trigonometric functions with
di fferent periods. We shall call such SYSTEMS POLYPERIODIC and their potentials will
be superposition of potentials of monoperiodic systems.

If the charge and current densities are arbitrary functions of time, then, as it
is known, they can be presented by a Fourier integral as a superposition of monope-

riodic functions and such will be also the potentials. We call such systems APERIC-
DIC.

36. THE POTENTIALS AT LARGE DISTANCES FROM THE GENERATING SYSTEM

Let us consider the potentials generated by an electromagnetic system of arbitra-
rily moving charges at large distances from the system, that is at distances which
are large compared with the dimensions of the system.

We choose (fig. 16) the origin O of the reference frame somewhere in the interior
of the system of charges using the following notations: the radius vector of the re-
ference point P is denoted by r and the unit vector along it by n; the radius vec-
tor of the charges in the differential volume dV around point Q (where the charge
and current densities are Q(t) and J(t), respectively) is denoted by r'; the radius
vector from the the volume dV to the reference point P is denoted by R.

X
Fig. 16. Electromagnetic system and a far lying reference point.



- 128 -

Denoting by L the largest dimension of the system, we shall assume
r>» L,

and therefore

(36.1)

r>»>r'.

-—

(36.2)
From fig. 16 we have R = r - r', and thus we can write approximately
R=|r-r'| 2 (r2 - 2r.r')1/2

r{l- 2n.r'/r)l/2 =r -
and with larger inaccuracy

n.r',

(36.3)
R

e

r.

(36.4)
test period of oscillation T of the charge and current densities at the different

In addition to the condition (36.1) we shall sometimes assume also that the shor-
elementary volumes of the system is much larger than the time in which light covers
the largest dimension of the system, i.e.,

T > L/c.

(36.5)
Let us now consider the advanced magnetic potential of a monoperiodic system.
Substituting (36.3) into the second formula (35.8), we shall have at this approxima-
tion

s

eik(r - n.r')dv
r-n.r'

(36.6)
Taking into account assumption (36.2), we can neglect n.r' with respect to r in the
denominator. However, this condition is not enough to make the same neglection in
the exponent of the nominator. Indeed, we have

refelk(r -n.r')y cos{gl'(r -n.r' )} = cos[en{L - r’
cT cT

r')}. 36.7
T cos(n.r')}] ( )
Thus we can neglect in this expression (r'/cT)cos(n.r') only if r'/cT < L/cT « 1,
i.e., if also condition (36.5) is fulfilled.
Thus assuming that only condition (36.1) is fulfilled but condition (36.5) is not,
we can write (36.6) in the form

ikR
A =8

w-_

-n.r'
= { Jme dv.

(36.8)
Assuming that both conditions (36.1) and (36.5) are fulfilled, we can write (36.6)
in the form

ikr
A:=%

\ 2 = £dev. (36.9)
These results can be applied to the first formula (35.8) and then to the electromg-
netic potentials of polyperiodic and aperiodic systems.

Let us consider now the advanced magnetic potential of an arbitrary system written
in the general form (35.6). Substituting (36.3) into (35.6), we shall have
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A=l [ J(t - r/c+ n.r'/c)

3%.10
Cy r-n.r' ( )

Assylm'ng that only condition (36.1) is fulfilled but condition (36.5) is not, we can

write
A = - 6 J(t' + n.r'/c)av, (36.11)

where t' =t -r/c is the common advanced moment for the whole system, i.e., the ad-
vanced moment taken with respect to the frame's origin.

Expanding the integral in (36.11) as a power series of the smll quantity n.r'/c,
we obtain

I A . SECULE ?—;6(11 r')_d(tf—'h ..... . (36.12)

Since m is a constant unit vector and the vectors r' are integration variables which
do not depend on time, we can write, taking into account that JdV is equal to the
sum of the charges in the volume dV multiplied by their velocities

1 1 d '
A== .):qvi(t ) + =z @ 12 q;(nrive(t') + aeennn, . (36.13)
In zero approximation we have
(). L Fqy L d g, .. @
A cr iglqivi TTrat izlqir "o (36.14)

where d is the advanced dipole moment of the system, and the point over the symbol
signifies that time derivative is taken from this quantity. We remind that the ele-
ments of motion on the right side of the last formulas are taken at the common ad-
vanced moment.

37. POTENTIAL FIELD AND RADIATION FIELD

We established in Sect. 34 that the intensity field of an arbitrarily moving
electric charge consists of two parts - potential part and radiation part. As formu-
las (34.38) show, the potential electric and magnetic intensities are inversely pro-
portional to the second power of the distance from the charge producing them, while
the radiation electric and magnetic intensities are inversely proportional to the
first power of this distance. Then we established that the potential electromagne-
tic intensities "appear", as the potentials, instantly in whole space, i.e., they
are immterial, while the radiation electromagnetic intensities "propagate" with the
velocity of light from the charge producing them to infinity; thus we have identi fied
the radiation field of the charge by the photons emitted by it.

As the field of a system of arbitrarily mving charges represents a superposition
of the fields of anyone of these charges, the common intensity field of the whole sy-

stemwill also consist of a potential part and a radiation part.
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Let us now find the field of a system of charges at large distance from it. As
mentioned in Sect. 35, for the calculation of the potential and radiation intensities
we use the advanced potentials but thenin all non-radiation intensity terms we have
to put ¢ = « everywhere where this "c" appears as a result of manipulation with ad-
vanced time; non-radiation terms are all those which are not inversely proportional
to the first power of the distance from the system to the reference point. The es-
sence of this program will become clear in this section.

For simplicity sake, we shall make a calculation for the potentials taken in zero
approximation. Thus the advanced magnetic potential will be given by formula (36.14),.
The advanced electric potential can be calculated by substituting (36.14) into the

equation of potential connection (8.8)

div(d/cr) = - (1/c)ad/at. (37.1)
After integration we can determine the electric potential

¢ = - div(d/r) + Const, (37.2)

where the constant of integration must have the form

Co 1 %
nst = — q
!

because if we put the dipole moment equal to zero, we shall have, at the assumption
(36.1),

i (37.3)

1 n
¢ = = -Zlqi’ (37.4)

where n is the number of the charges in the system.

Let us assume that the sum of all charges in the system is zero. Then the advan-
ced electric potential will have the form (37.2) with Const = 0. Putting this and
(36.14) into the fundamental definition equalities (34.1), we obtain the following
expressions for the electric and magnetic intensities

) . d 1 d 1 .d
E = grad(d'lvF) ';é' —r—', B = C rOt'r;. (37.5)

Now I shall calculate the monoperiodic amplitudes of the electric and magnetic
intensities, assuming that the charge densities are monoperiodic functions of time;
if they are polyperiodic or aperiodic functions of time, then we shall assume that
a suitable expansion in a Fouruer series or Fourier integral is performed.

The resultant advanced dipole moment of the system can be presented as a superpo-
sition of the advanced monoperiodic moments of the form

oy L -iwt' _ -iw(t -r/c) _ -jwt +1k
d(t') = dwe = dme dwe . (37.6)
We see that the velocity "c" which figures in the advanced time is included in the

wave number k; hence in all non-radiation intensity terms of the final reslt we have
to put k = 0.
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The electric and magnetic intensities produced by this monoperiodic dipole moment
will also be periodic functions with the sam frequency
E(t) = Ee 'Y, B(t) = B e 't (37.7;

Substituting (37.6) and (37.7) into the first equation (37.5) and dividing the
equation obtained by the common factor exp(-iwt), we obtain for the monoperiodic am-
plitude of the electric intensity with frequency w the following expression

ikr 2 _ikr iltr' 2
E, = grad{div(®—d )} + .‘;’_2 ®—d, = grad(d,.grac®—) + £ ™" ¢ -
ikr 2 2
(d .grad)grac®— + £ e'*" ¢ - (d_ grad)l(— - --)e“"' r1 s Koty
re
@ (- 2ik, 3 _ 2 ikyolkr o0y ik Lydkr g K ke
w34 23 2 3 w T W
2 . . 2 .
(- kr _ 312k + z)e'kr(d n)n + (_ - _)e1kr d + kr ikr d
r r I‘ l’ (37.8)
k2 ikr ikr ikr
e {d (d .n)n} - 7 e (3(d .njn - d ) + —3- e (3(d .n)n - d N2
r r

The amplitude of the radiation electric intensity is the one which is inversely
proportional to the first power of r; thus we can write
2 ikr

Eag = = €K nx(d xn). (37.9)

wrad
In a1l other terms we have to put k = 0 and these terms which remin will represent
the amplitude of the potential electric intensity. Thus we shall have

E

1
wpot = -;3{3(dm.n)n -d). (37.10)

I showed (see (31.12)) that this is the electric intensity generated by a static
electric system with a total charge equal to zero and dipole moment (31.6) different
from zero. The difference from the static system is only this that in the general
dynamic monoperiodic case the potential electric intensity, according to formula
(37.7) is a monoperiodic function of time.

The second term on the right side of (37.8) appears only as a result of the com-
putation and when putting k = 0 disappears, i.e., 1t has no physical meaning.

Which are the errors of conventional physics which assumes that the interaction
“"propagates"” with the velocity c? First it has to consider the second term on the
right side of (37.8) as a real electric intensity. However nobody has measured such
an intensity. Second, conventional physics considers the third term on the right
side of (37.8) together with the factor eikr, i.e., it assumes that the potential
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electric intensity of a monoperiodic system has a "wave character". It is extremely
easy to show experimentally that this assertion is not true, as I shall show beneath,

Let us now see which are the radiation and potential magnetic intensities of a
system with monoperiodic dipole moment different from zero. Substituting (37.6) and
(37.7) into the second equation (37.5) and divinding the equation obtained by the
common factor exp(-iwt), we obtain for the monoperiodic anplitude of the magnetic
intensity with frequency w the following expression

" lkr !kr K
Bw=-1-rot(———d ) =|-—d *grad—-— 1—d >t{(——-—--)el "n} =
I‘
2 .
- Er_ AL I TN L (37.11)
v crl “

The amplitude of the radiation magnetic intensity is the one which is inversely
proportional to the first power of r; thus we can write

2 .
_ k™ _ikr
Bwrad = e nxdw. (37.12)

In the other term representing the amplitude of the potential magnetic intensity
we have to put k = 0; so we obtain

B =19 nxd
wpot cr‘z

Having in mind (37.7) and (37.13), we can write the time depending potential mag-
netic intensity corresponding to the frequency w in the form

(37.13)

Bpot(t) "3 nxd e . dt(d ) crzxd( ). (37.14)
Using now formula (36.14), we get
t
Boos(t) = - DaAt) = .?_.x! _L).dv - {’ cr""dv. (37.15)

Canceling the common factor exp(-iwt), we obtain for the amplitude of the potential
magnetic intensity
Jdyn
Bwpot ~ 2 dv. (37.16)

This is the magnetic potential of a stationary (quasi-static) system of electric
charges, as it can be immediately shown taking rotation from A = IJdV/cr.

The radiation electric and magnetic intensities (37.9) and (37.12) can be imme-
diately obtained from formulas (34.35), which we can write in the form

Erad = nx(nxA/c), B = - nxA/c, (37.17)

rad
in which form they are valid i{f A is the advanced magnetic potential not only of a

single charge but of a whole system. Indeed, if we put here (36.14), using (37.6)
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and(37.7), we easily obtain (37.9) and (37.12).

As said above, conventional physics has to consider the last terms on the right
sides of equations (37.8) and (37.11) together with the factor exp(ikr). This will
give to the potential electric and magnetic intensities a "wave character”. A very
easy experiment showing that this is not true, i.e., that the potential electromag-
netic intensities have no "wave character” is the following one: Take two big coils
set aside at a certain distance L and feeded by strong currents with the same high
enough frequency, so that c/w < L/2n. Take another small coil closed shortly by an
amperemeter in which current will be induced and so it will serve as an indicator
of the potential electric field produced by the big coils.If moving the indicator
coil between both powerful coils, we shall see that the induced current is the lar-
gest when the small coil is near the one or the other coil and gradually decreases,
being the less at the middle point. If the potential magnetic field would have 3
"wave character", the induced current will not decrease gradually at the above mo-
tion of the small coil, as both potential fields will interfere and the indicator
has to show "nodes" and "anti-nodes" of the produced “"standing waves". Nobody no-
where has observed such an effect. This effect, however, can be very easily observed
exactly in the above way for the radiation electromagnetic field of two antennas.

Now the big question is to be posed, how can we, by measuring a certain electric
intensity E and a certain magnetic intensity B, discern which is potential and which
is radiation (or which parts in E and B have potential and which radiation charac-
ter). This is a very important question to which official physics cannot give a clear

answer.
The distinction which | make is the following: E and B are radiation elecric and

magnetic intensities if and only if they are produced by the same charges, have equal
magnitudes, are mutually perpendicular, and the vector ExB points away from the Sys-
tem producing them. Note that the requirement "produced by the same charges” is very
important. So if we have a parallel plates condenser producing the electric intensi-
ty E and a cylindrical current coil whose axis is perpendicular to E producing a
magnetic intensity B such that B = E, then the requirement of calling them radiation
electromagnetic intensities are fulfilled except the requirement to be produced by
the same charges. Thus these electric and magnetic intensities are potential.

The requirement “produced by the same charges" in the above definition can be
replaced by the following one: On a unit surface placed perpendicularly to the vec-
tor ExB, a pressure must act equal to the pressure which a gas with mass density
U= Ezldnc moving with velocity 1 cm/sec exerts on a wall placed perpendicularly to
its flow. Thus the radiation electric and magnetic intensities must transfer energy
(mass ).

I sketched in fig. 17 another experiment which can demonstrate the substantial

di fference between potential and radiation intensities.
Let us have an oscillating circuit consisting of an induction coil L, a conden-
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Fig. 17. Experiment demonstrating the momentary propagation of the
potential magnetic intensity.

ser C and a generator G which mintains undamped electromagnetic oscillations of the

circuit. As it is known, the period of oscillations and the circular frequency are
given by the formulas (see Sect. 54.2)

T = Zn(LC)Uz. w=2u/T = (LC)-U2~ (37.18)

Let us suppose that the condenser and the generator are enclosed in a screen-box
S, so that this oscillating circuit cannot radiate electromagnetic waves into free
space, where only its potential magnetic field will exist.

Let us put another induction coil L' at a distance R from the coil L. If coil L
is long enough, we can assume that its potential magnetic intensity will be concen-
trated in the coil pointing along its axis and having the value B = (4nnl/c)cos(wt),
where n is the number of the windings on a unit of length and 1 is the amplitude of
the alternating current flowing in the windings (see formula (18.28)). The magnetic
potential of L at the space domain where L' is placed is A = (ZnnlrzlcR)cos(wt).
where r is the radius of the coil L. The magnetic potential A is tangential to a cy-
linder with raduis R having the same axis as the axis of coil L. According to the
first formula (34.1), the electric intensity generated by the alternating current
in L at the domain where L' is placed will be also tangential to the mentioned cy-
linder with radius R and have the magnitude E = (Zunlrzw/cR)sin(mt). As in the win-
dings' halves of L' which are nearer to L the induced electric intensity will be
bigger than in the halves which are farther, a resultant sinusoidal tension will be

induced in L'. This tension, however, is small (if L is infinitely long, it disap-
pears), and it is better to make L' with a radius R encircling L.
Let now suppose that the condition

R >cT (37.19)
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is fulfilled. According to official physics, for the time of one period of the os-
cillations the field of the magnetic potential propagating from coil L
to coil L' cannot reach the latter. But, on the other hand, we know that at the be-
ginning and the end of every half period the whole electromgnetic energy of the
ci Ecuit is concentrated in the electric field of the condenser C (suppose for sim-
plicity sake that the circuit L-C is without losses which, as a matter of fact, are
covered by the energy coming from the generator G). Thus we have to conclude that
under the condition (37.19) no electromagnetic energy can be transferred from the
circuit L-C to the coil L°'.

According to my primitive and childish concepts, the potential electric and mag-
netic fields do not "propagate" with velocity c but "appear" instantly in whole
space. Thus even at the condition (37.19) electromagnetic energy will be transferred

from the circuit L-C to the circuit of coil L', and the amperemeter will show the
existence of induction current. As the field in the outer space is potential, at
open circuit of L' no energy will be absorbed from the potential field and the ge-
nerator G will cover only the inevitable losses in the circuit L-C. However, if the
ciruit of L' will be closed, induced current will flow in it, energy will be absor-
bed and, because of the back induction of L' in L, the generator must increase its
power, otherwise the energy consumed by L' will damp the oscillations in the L-C
circuit.

Let us now put the screen box S away and let us begin to make the distance be-
tween the condenser's plates bigger and bigger, until the whole circuit will become
a straight line with a condenser's plate at any of its ends and the coil L in the
middle. If the coil will remin further very long and having the whole magnetic
field inside, this system will again have only potential fields in the outer space
and both fields (of the condenser and of the coil) will be electric. If, however,
we shall begin to diminish the windings of the coil reducing it at the end to a
straight wire, in the outer space will exist both the electric and magnetic inten-
sities of the L-C circuit. The parts of them which will be with equal magnitudes,
which will be mutually perpendicular and for which the product E>8 will point away
from the system will be their radiation electric and magnetic intensities. The coil
L' will react both to the potential and radiation electric and magnetic intensities
and current generated by their common action will flow in L'.

Here it is to be mentioned that if the predominant part of the enerqgy absorbed
by L' will have a radiation character, then the fact whether L' is closed (absorbs
energy) or open (does not absorb energy) has no influence on the generator G which
covers only the inevitable losses in the circuit and the energy radiated in the
form of electromagnetic waves (photons).

A1l these experiments are enough simple for execution and their explanation is
also extremely simple. Nevertheless official physics defends the wrong concept that
also the potential electric and mgnetic intensities, and even the electric and mag-
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netic potentials, "propagate" with the velocity of light,

At the end of this section [ should like to emphasize once more that the potential
electric and magnetic intensities are determined by the values of the charge and cur-
rent densities at the different elementary volumes of the system, while the radiation
electric and magnetic intensities are determined by the rate of change of these den-
sities.

38. DIPOLE RADIATION

In zero approximation at large distances from the generating system the magnetic
potential can be expressed by the dipole moment of the system according to formula
(26.14). Substituting this expression for the advanced magnetic potential into the
general formula (37.17) for the radiated electric and magnetic intensities, we obtain

_l . _]...
E.aq = o5 M*(nxd), B ag = 7 dxn. (38.1)

The radiation described by the formulas (38.1) is called DIPOLE RADIATION because
the electric and magnetic radiation intensities depend only on the dipole moment of
the system (on its second time derivative).

As already said, the radiated electromagnetic waves (photons) are carrying away
a definite amount of energy from the radiating system. The intensity of the radia-
ted energy flux is given by formula (34.39). Taking into account the relations (see

formulas (34.35)) Brad = "xErad' Erad'" = 0, Erad = Brad’ we can write
- _C _C _ ¢ 2 _ C o2
L= BradBrad = a7 Erad(™Erad) = 77 Erad" = 77 Brad™ (38.2)

Taking into account our third axiom, we have to understand the above equation

always in the following form
c T/2 2 c T2 5
| = 3 -TI (Erad/4n)dt -3 _ng(arad/4“)dt' (38.3)

/2
where T is the period of the electromgnetic wave (the period of the photon). Indeed,
according to the third axiom, only when time equal to the period of a particle has
elapsed can we affirm that the particle has crossed a given surface. For times shor-
ter than the period we cannot say on which side of the surface is the particle.

It is more convenient to express I by B,,4 (see the right-hand expression in
(38.2)) as B,a4 can be expressed by d more simply than Epaq (see (38.1)).

The energy flux of radiation dP in a unit of time into the element of a solid
angle di is defined as the amount of energy passing in a unit of time through the
element dS = r2d of the spherical surface with center at the frame's origin and
radius r (see fig. 16). This quantity is clearly equal to the intensity of the ener-
qy flux density 1 multiplied by dS, so that using (38.1) we obtain

P = 1ds = (c/an)88ran = (174nc3)(n=d)da. (38.4)
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The whole energy flux can be obtained if we integrate (38.4) over a sphere con-
taining the radiating system at its center. Let us introduce spherical frame of re-
ference with polar axis along the vector d. Let the zenith angle and the azimuth
angle of the unit vector n be 8 and ¢; 6 is consequently the angle between d and n.
As dQ = sin@ dod¢,

nin
[11"‘—"1- ®=[ | & 5 sin% dadp = -2—3 &. (38.5)
4n 4nc 0 O TI'C 3c

If we have just one charge moving in an external field, we shall have, keeping
in mind (31.6), d = qr = qu, so that the total energy radiated in a unit of time by

this charge will be
P = _L 2. (38.6)
3c2

We note that a system of particles, for which the ratio of charge to mass is the
same, cannot radiate (by dipole radiation). Indeed, for such a system

n n n
= q./ .r. = Const .r. = Const R )m., 38.7

where Const is the charge-to-mass ratio common for all charges and R is the radius
vector of the center of mass of the system. As the center of mass moves uniformly,
its acceleration is zero and consequently the second time derivative of d is zero,
too.

If the particle performs such a mtion that its dipole moment is a simple perio-
dic function of time with a period T = 2n/w, we shall have

d(t) = dwe'*‘“t, (38.8)

where dw is the complex amplitude of the dipole moment (which, at a suitable choice
of the initial moment, can be taken real and equal to the maximum value of the di-
pole moment - see Sect. 35).

Hence, substituting (38.8) into (38.5), we obtain for the total energy flux

P =L ji))? = £ utg )l

33 3¢3 [36:)

39. RADIATION REACTION

As formulas (34.47) show, the radiation reaction electric and mgnetic intensi-
ties are as follows

3 -
Eoa = - (29/3¢™ M, Bea = 0 (39.1)

Let us calculate the change of the energy of a system of n charges due only to
the action of the electric intensities of radiation reaction Epea; Of the various
charges. On each charge of the system the "kinetic" force



